The bang-bang funnel controller: An experimental verification

Christoph Hackl* and Stephan Trenn**

* Institute for Electrical Drive Systems and Power Electronics, TU München, Germany

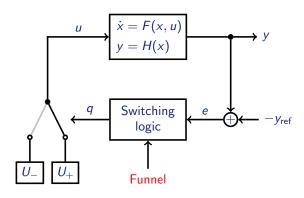
** Technomathematics group, University of Kaiserslautern, Germany

Content

Introduction

- 2 Experimental setup and adjusted switching rule
- 3 Experimental results

The Bang-Bang funnel controller: Basic idea



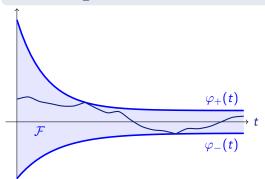
Here: System has relative-degree two with bounded zero dynamics

Control objective

Error $e := y - y_{ref}$ evolves within *funnel*

$$\mathcal{F} = \mathcal{F}(arphi_-, arphi_+) := \{ \ (t,e) \ | \ arphi_-(t) \leq e \leq arphi_+(t) \ \}$$

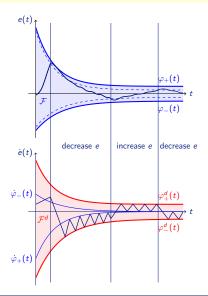
where $\varphi_{\pm}:\mathbb{R}_{>0}\to\mathbb{R}_{>0}$

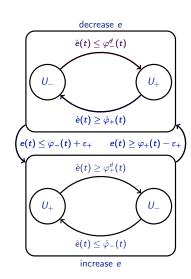


- time-varying strict error bound
- transient behaviour
- practical tracking $(|e(t)| < \lambda \text{ for } t >> 0)$

The switching logic (Liberzon & T. 2010)

Experimental results





Theoretical result relative degree two

Feasibility

- feasibility of funnels
- input values large enough

Theorem (Bang-bang funnel controller)

Relative degree two & Funnels & simple switching logic & Feasibility

Bang-bang funnel controller works:

- existence and uniqueness of global solution
- error and its derivative remain within funnels for all time
- no zeno behaviour

Content

Introduction

- 2 Experimental setup and adjusted switching rule
- 3 Experimental results

Experimental setup

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ \gamma \end{bmatrix} (u(t) + u_L(t) - (Tx_2)(t)),$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t),$$

 x_1 : angle of the rotary machine

 $x_2 = \dot{x}_1$: angular velocity

 u_I : unknown load torque

 $T: \mathcal{C}(\mathbb{R}_{\geq 0} \to \mathbb{R}) \to \mathcal{L}^{\infty}_{loc}(\mathbb{R}_p \to \mathbb{R})$ friction operator

0.000

Control input limitations

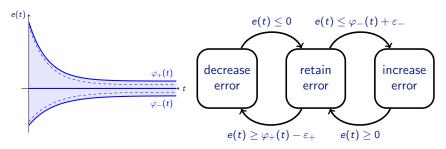
Control inputs

$$U_{+} = 22 \,\mathrm{Nm}$$
 $U_{0} = 0 \,\mathrm{Nm}$ $U_{-} = -22 \,\mathrm{Nm}$

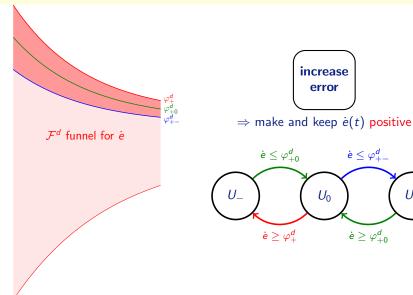
Problem and solution

Direct switch from U_+ to U_- and vice versa not "healthy" for machine

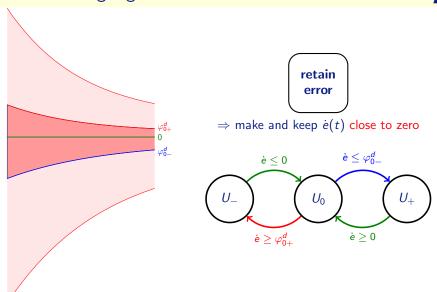
⇒ Definition of new switching logic necessary!



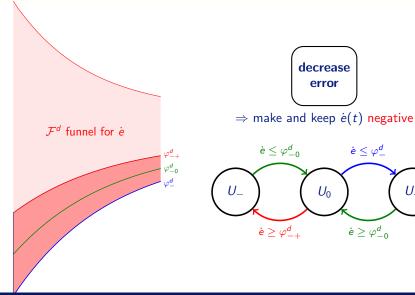
New switching logic



New switching logic



New switching logic



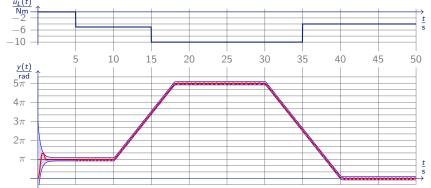
Content

Introduction

2 Experimental setup and adjusted switching rule

3 Experimental results

Reference tracking in the presence of unknown load



Transient response without load disturbance

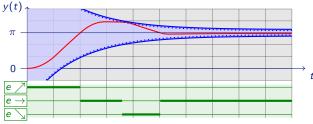
$$t \in [0,2s]$$

$$u_L \equiv 0$$

$$y_{\rm ref} \equiv \pi$$

$$y(0) = 0$$

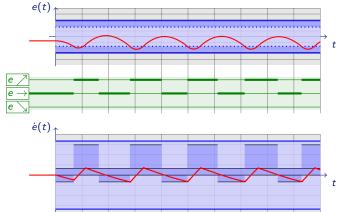
$$\dot{y}(0)=0$$



Response in the presence of load disturbance

$$u_L \equiv -4 \,\mathrm{Nm}$$

$$y_{\mathsf{ref}} \equiv \pi$$



Summary

