On Observability of Switched DAEs

Aneel Tanwani and Stephan Trenn

49th IEEE Conference on Decision and Control Friday, December 17, 2010, 11:00–11:20, Atlanta, USA

Introduction	The single switch result	The result explained	Conclusion
000	O	000000000	O
Contents			I

DAE = Differential algebraic equation

- Introduction
 - System class
 - Motivation
- 2 The single switch result
- 3 The result explained
 - The space \mathfrak{C}_{-}
 - The space $\ker O_-$
 - The space $\ker O_{-}^{+}$
 - The space $\ker O^{\mathsf{imp}-}_+$

4 Conclusion

Introduction	The single switch result	The result explained	Conclusion
000		00000000	
Switched DAEs			I

Switched linear DAE (swDAE)

$$\begin{split} E_{\sigma(t)}\dot{x}(t) &= A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t) \\ y(t) &= C_{\sigma(t)}x(t) + D_{\sigma(t)}u(t) \end{split} \quad \text{or short} \quad \begin{aligned} E_{\sigma}\dot{x} &= A_{\sigma}x + B_{\sigma}u \\ y &= C_{\sigma}x + D_{\sigma}u \end{split}$$

with

- switching signal $\sigma : \mathbb{R} \to \{1, 2, \dots, p\} =: \overline{p}$
 - piecewise constant
 - locally finite jumps

• matrix tuples $(E_1, A_1, B_1, C_1, D_1), \dots, (E_p, A_p, B_p, C_p, D_p)$

- $E_p, A_p \in \mathbb{R}^{n \times n}$, $B_p \in \mathbb{R}^{n \times r}$, $C_p \in \mathbb{R}^{m \times n}$, $D_p \in \mathbb{R}^{m \times r}$, $p \in \overline{p}$
- (E_p, A_p) regular, i.e. $det(E_p s A_p) \not\equiv 0$, $p \in \overline{p}$

Motivation

Electrical circuits, see next talk.

Introductio	n
000	

The result explained

Global Observability of Switched DAEs

Definition (Global observability)

The **(swDAE)** is (globally) observable : \forall solutions $(u_1, x_1, y_1), (u_2, x_2, y_2)$: $(u_1, y_1) \equiv (u_2, y_2) \Rightarrow x_1 \equiv x_2$

Proposition (0-distinguishability)

The (swDAE) is observable if, and only if,

 $y \equiv 0 \text{ and } u \equiv 0 \quad \Rightarrow \quad x \equiv 0.$

Hence consider in the following (swDAE) without inputs:

 $E_{\sigma}\dot{x} = A_{\sigma}x$ $y = C_{\sigma}x$

and observability question:

$$y \equiv 0 \stackrel{?}{\Rightarrow} x \equiv 0$$

	O	00000000	O
Motivatin	g example		I
	System 1:	System 2:	
$\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \dot{x} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} x$ $y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} x$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \dot{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ y = \begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} x$ $\begin{bmatrix} 0 & 1 \end{bmatrix} x$
$y = x_3, \dot{y} \Rightarrow$	$\dot{x}_3 = 0$, $x_2 = 0$, $\dot{x}_1 = 0$ x_1 unobservable	$y = x_3 = \dot{x}_1, \ x_1 = 0$ $\Rightarrow x_2$ unobserva	, $\dot{x}_2=0$ ble
$\sigma(\cdot):1$ –	$\rightarrow 2$	$\sigma(\cdot):2\to 1$	
$\begin{array}{c} Jump in x_1 \\ \Rightarrow Observa \end{array}$	$_1$ produces impulse in y ability	Jump in x_2 no influence i $\Rightarrow x_2$ remains unobserval	n <i>y</i> ole
Questic	on		
$E_p \dot{x} = 2$ $y = 0$	$A_p x + B_p u$ not $C_p x + D_p u$ observable $\stackrel{?}{\Rightarrow}$	$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$ $y = C_{\sigma}x + D_{\sigma}u$ observed by the second sec	ervable
On Observability of Swite	ched DAEs	Aneel Ta	anwani and Stephan Trenn

Introduction	The single switch result	The result explained	Conclusion
000		00000000	
Contents			1 📟

- Introduction
 - System class
 - Motivation

2 The single switch result

- 3 The result explained
 - The space ℭ_
 - The space ker O_{-}
 - The space $\ker O_{-}^{+}$
 - The space ker $O^{\mathsf{imp}-}_+$

4 Conclusion

$$(E_-, A_-, C_-) \xrightarrow{\sigma} (E_+, A_+, C_+)$$

$$t = 0 \qquad t$$

Theorem (Observability)

The (swDAE) with a single switch is observable if, and only if,

$$\{0\} = \mathfrak{C}_{-} \cap \ker O_{-} \cap \ker O_{+}^{-} \cap \ker O_{+}^{\mathsf{imp}-}$$

What are these four subspace?

Introduction	The single switch result	The result explained	Conclusion
000	O		O
Contents			I

1 Introduction

- System class
- Motivation

2 The single switch result

- 3 The result explained
 - \bullet The space \mathfrak{C}_-
 - The space ker O_{-}
 - The space $\ker O_{-}^{+}$
 - The space $\ker O_+^{\mathsf{imp}-}$

4 Conclusion

000 0	The result explained ●0000000	Conclusion O
Solutions of classical DAEs		I
Consider for now non-switched DAE $E\dot{x} = Ax.$	$(E, A) \left(\begin{bmatrix} 0 & 4 & 0 \\ 0 & 4 & 0 \end{bmatrix} \begin{bmatrix} -4\pi \\ -4\pi \end{bmatrix}$	-40]
Theorem (Weierstrass 1868)	$(L,A) = \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \end{bmatrix} \right)$	$\begin{pmatrix} 4\pi & 0 \\ -4 & 4 \end{bmatrix}$
$ \begin{array}{l} (E,A) \ \textit{regular} \ \Leftrightarrow \\ \exists S,T \in \mathbb{R}^{n \times n} \ \textit{invertible:} \\ (SET,SAT) = \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right), \\ N \ \textit{nilpotent} \end{array} $		x x x x x 1
Corollary (for regular (E, A))		
$x \text{ solves } E\dot{x} = Ax \Leftrightarrow x(t) = T \begin{pmatrix} e^{Jt}v_0\\ 0 \end{pmatrix}$	$T = \begin{bmatrix} 0 & 4 & * \\ 1 & 0 & * \end{bmatrix}, J = \begin{bmatrix} -1 & -4 \\ -4 \end{bmatrix}$	π]
Consistency space: $\mathfrak{C}_{(E,A)} := T \begin{pmatrix} * \\ 0 \end{pmatrix}$	- [11*]' ^ο [π -]	LJ

On Observability of Switched DAEs

$$\underbrace{(E_{-}, A_{-}, C_{-})}^{\sigma} \underbrace{(E_{+}, A_{+}, C_{+})}_{t = 0} \xrightarrow{t} t$$

Property of solution

x solves $E_{\sigma}\dot{x} = A_{\sigma}x$, then

•
$$x \equiv 0 \quad \Leftrightarrow \quad x(0-) = 0$$

• $x(0-) \in \mathfrak{C}_{-} := \mathfrak{C}_{(E_{-},A_{-})}$

Reminder:

$$(S_{-}E_{-}T_{-}, S_{-}A_{-}T_{-}) = \left(\begin{bmatrix} I & 0 \\ 0 & N_{-} \end{bmatrix}, \begin{bmatrix} J_{-} & 0 \\ 0 & I \end{bmatrix} \right) \text{ and } \mathfrak{C}_{(E_{-},A_{-})} = T_{-} \begin{pmatrix} * \\ 0 \end{pmatrix}$$

	The single switch result	The result explained	Conclusion
000		0000000	
The differer	ntial projector		

Let $S, T \in \mathbb{R}^{n \times n}$ be invertible with $(SET, SAT) = (\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix}).$

Definition (Differential "projector")

$$\Pi^{\mathsf{diff}}_{(E,A)} := T \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} S \quad \mathsf{and} \quad \boxed{A^{\mathsf{diff}} := \Pi^{\mathsf{diff}}_{(E,A)} A}$$

Following Implication holds:

$$x ext{ solves } E\dot{x} = Ax \quad \Rightarrow \quad \dot{x} = A^{\mathsf{diff}}x$$

Hence, with y = Cx,

 $y \equiv 0 \quad \Rightarrow \quad x(0) \in \ker[C/CA^{\mathsf{diff}}/C(A^{\mathsf{diff}})^2/\cdots/C(A^{\mathsf{diff}})^{n-1}]$

$$\underbrace{(E_-, A_-, C_-)}^{\sigma} \underbrace{(E_+, A_+, C_+)}_{t = 0} \xrightarrow{t} t$$

Hence

$$y_{(-\infty,0)} \equiv 0 \quad \Rightarrow \quad x(0-) \in \ker \underbrace{[C_{-}/C_{-}A_{-}^{\text{diff}}/C_{-}(A_{-}^{\text{diff}})^{2}/\cdots/C_{-}(A_{-}^{\text{diff}})^{n-1}]}_{:=O_{-}}$$

and

$$y_{(0,\infty)} \equiv 0 \quad \Rightarrow \quad x(0+) \in \ker \underbrace{[C_+/C_+A_+^{\mathsf{diff}}/C_+(A_+^{\mathsf{diff}})^2/\cdots/C_+(A_+^{\mathsf{diff}})^{n-1}]}_{:=O_+}$$

Question: $x(0+) \in \ker O_+ \Rightarrow x(0-) \in ?$

Assume $(S_+E_+T_+, S_+A_+T_+) = \left(\begin{bmatrix} I & 0\\ 0 & N_+ \end{bmatrix}, \begin{bmatrix} J_+ & 0\\ 0 & I \end{bmatrix} \right)$:

Consistency projector $x(0+) = \Pi_+ x(0-)$ where $\Pi_+ := T_+ \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} T_+^{-1}$

 $x(0+) \in \ker O_+$

$$\Rightarrow x(0-) \in \Pi_+^{-1} \ker O_+ = \ker \underbrace{O_+\Pi_+}_{=:O_+^-}$$

Introduction	The single switch result	The result explained	Conclusion
000	O		O
Main result rev	isited		

Reminder of main result

The (swDAE) with a single switch is observable if, and only if,

$$\{0\} = \mathfrak{C}_{-} \cap \ker O_{-} \cap \ker O_{+}^{-} \cap \ker O_{+}^{\mathsf{imp}_{-}}$$

So far:

$$y_{(-\infty,0)} = 0 \land y_{(0,\infty)} = 0 \quad \Rightarrow \quad x(0-) \in \mathfrak{C}_- \cap \ker O_- \cap \ker O_+^-$$

where

$$O_{-} = [C_{-} / C_{-}A_{-}^{\mathsf{diff}} / C_{-}(A_{-}^{\mathsf{diff}})^{2} / \dots / C_{-}(A_{-}^{\mathsf{diff}})^{n-1}]$$

and

$$O_{+}^{-} = [C_{+} / C_{+}A_{+}^{\mathsf{diff}} / C_{+}(A_{+}^{\mathsf{diff}})^{2} / \dots / C_{+}(A_{+}^{\mathsf{diff}})^{n-1}]\Pi_{+}$$

Introduction	The single switch result	The result explained	Conclusion
000		000000000	
The impulsi	ve effect		I

Assume
$$(S_+E_+T_+, S_+A_+T_+) = \left(\begin{bmatrix} I & 0\\ 0 & N_+ \end{bmatrix}, \begin{bmatrix} J_+ & 0\\ 0 & I \end{bmatrix} \right)$$
:

Definition (Impulse "projector")

$$\Pi^{\mathsf{imp}}_{+} := T_{+} \begin{bmatrix} 0 & 0\\ 0 & I \end{bmatrix} S_{+} \quad \mathsf{and} \quad \boxed{E^{\mathsf{imp}}_{+} := \Pi^{\mathsf{imp}}_{+} E_{+}}$$

Impulsive part of solution:

$$x[0] = \sum_{i=0}^{n-1} (E_{+}^{\mathsf{imp}})^{i+1} (x(0+) - x(0-)) \delta_{0}^{(i)}$$

Conclusion:

$$y[0] = 0 \quad \Rightarrow \quad C_+ x[0] = 0 \quad \Rightarrow \quad x(0+) - x(0-) \in \ker O_+^{\mathsf{imp}}$$

where

$$O_{+}^{\mathsf{imp}} := \left[C_{+} E_{+}^{\mathsf{imp}} \, / \, C_{+} (E_{+}^{\mathsf{imp}})^{2} \, / \, \cdots \, / \, C_{+} (E_{+}^{\mathsf{imp}})^{n_{2}-1} \right]$$

Introduction	The single switch result	The result explained	Conclusion
000	O	○○○○○○○●○	O
The unobservat	ole space		1

$$\begin{aligned} x(0+) &= \Pi_+ x(0-) \text{ and } x(0+) - x(0-) \in \ker O_+^{\mathsf{imp}} \text{ gives} \\ x(0-) &\in (\Pi_+ - I)^{-1} \ker O_+^{\mathsf{imp}} = \ker \underbrace{O_+^{\mathsf{imp}}(\Pi_+ - I)}_{=:O_+^{\mathsf{imp}-}} \end{aligned}$$

Altogether:

$$y \equiv 0 \quad \Rightarrow \quad x(0-) \in \mathcal{M} := \mathfrak{C}_{-} \cap \ker O_{-} \cap \ker O_{+}^{-} \cap \ker O_{+}^{\mathsf{imp}-}$$

Theorem (Unobservable subspace) $y \equiv 0 \iff x(0-) \in \mathcal{M}$ Corollary: (swDAE) observable $\Leftrightarrow \mathcal{M} = \{0\}$

Introduction	The single switch result	The result explained	Conclusion
		00000000	
Example re	evisited		I

System 1.						
$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \dot{x} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} x$ $y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} x$						
$\sigma(\cdot): 1 ightarrow 2$ gives						
$\mathfrak{C}_{-} = \operatorname{span}\{e_1, e_3\},\ \ker O_{-} = \operatorname{span}\{e_1, e_2\}\ \ker O_{+}^{-} = \operatorname{span}\{e_1, e_2, e_3\},\$						
$\ker O_+^{imp-} = \operatorname{span}\{e_2\}$						
$\Rightarrow \mathcal{M} = \{0\}$						

System 1.

System 2:

$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \end{array}$	$\begin{array}{c} 0\\ 0\\ \end{array}$	$\dot{x} =$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 0 \end{array}$	0 0	x
1	0	0		0	0	1	
			y = [0	0	1]	x

 $\sigma(\cdot): 2 \to 1 \text{ gives}$ $\mathfrak{C}_{-} = \operatorname{span}\{e_2\},$ $\ker O_{-} = \operatorname{span}\{e_1, e_2\}$ $\ker O_{+}^{-} = \operatorname{span}\{e_1, e_2\},$ $\ker O_{+}^{\operatorname{imp-}} = \operatorname{span}\{e_1, e_2, e_3\}$

Introduction 000	The single switch result O	The result explained	Conclusion
Conclusions			I

• We have studied observability of switched DAE

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$
$$y = C_{\sigma}x + D_{\sigma}u$$

- Full characterization of observability for single switch case, based on intersection of four subspaces:
 - Consistency: $x(0-) \in \mathfrak{C}_{-}$
 - Left unobservability: $y^{(i)}(0-) = 0 \iff x(0-) \in \ker O_-$
 - Jump unobservability: $y^{(i)}(0+) = 0 \iff x(0-) \in \ker O_+^-$
 - Impulse unobervability: $y[0] = 0 \iff x(0-) \in \ker O_+^{\mathsf{imp}-}$
- Understanding of single switch case fundamental for general switching signal (future work)

Definition (Forward observability)

The (swDAE) is forward observable : $\Leftrightarrow \forall (u_1, x_1, y_1), (u_2, x_2, y_2) : (u_1, y_1) = (u_2, y_2) \Rightarrow \exists T \ge 0 : x_{1(T,\infty)} = x_{2(T,\infty)}$

- in general, weaker than global observability
- presumably more useful for observer design

Theorem (Forward Observability for single switching)

The (swDAE) with single switching is forward observable if, and only if,

 $\Pi_+(\mathcal{M})=\{0\}.$

Example revisited:

 $\sigma(\cdot): 2 \rightarrow 1,$ (swDAE) globally unobservable but

 $\Pi_+(\mathcal{M}) = \{0\}$ hence (swDAE) is forward observable

General Class of Switching Signals

Let $\mathcal{M}_k := \mathfrak{C}_k \cap \ker O_k \cap \ker O_{k+1}^- \cap \ker O_{k+1}^{\mathsf{imp}-},$ $\mathcal{N}_m^m := \mathcal{M}_m$ $\mathcal{N}_{k-1}^m := \mathcal{M}_{k-1} \cap \Pi_k^{-1} (\exp(-A_k^{\mathsf{diff}} \tau_k) \mathcal{N}_k^m); \qquad 1 \le k \le m$

Theorem (Global Observability)

(swDAE) is globally observable if, and only if, $\exists m \in \mathbb{N}$ such that, $\mathcal{N}_0^m = \{0\}$

Similarly, let $\mathcal{P}_k := \prod_{k+1} (\mathfrak{C}_k \cap \ker O_k \cap \ker O_{k+1}^{\mathsf{imp}-}) \cap \ker O_{k+1}$,

$$\begin{aligned} \mathcal{Q}_0^0 &= \mathcal{P}_0\\ \mathcal{Q}_0^k &= \mathcal{P}_k \cap \Pi_{k+1}(\exp(A_{k+1}\tau_{k+1})\mathcal{Q}_0^{k-1}), \qquad k \ge 1 \end{aligned}$$

Theorem (Forward Observability)

(swDAE) is forward observable if, and only if, $\exists m \in \mathbb{N}$ such that, $\mathcal{Q}_0^m = \{0\}$

On Observability of Switched DAEs