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Switched DAEs

Switched linear DAE (swDAE)

Eσ(t)ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t)

y(t) = Cσ(t)x(t) +Dσ(t)u(t)
or short

Eσẋ = Aσx+Bσu

y = Cσx+Dσu

with

switching signal σ : R→ {1, 2, . . . , p} =: p

piecewise constant
locally finite jumps

matrix tuples (E1, A1, B1, C1, D1), . . . , (Ep, Ap, Bp, Cp, Dp)

Ep, Ap ∈ Rn×n, Bp ∈ Rn×r, Cp ∈ Rm×n, Dp ∈ Rm×r, p ∈ p

(Ep, Ap) regular, i.e. det(Eps−Ap) 6≡ 0, p ∈ p

Motivation
Electrical circuits, see next talk.

On Observability of Switched DAEs Aneel Tanwani and Stephan Trenn



Introduction The single switch result The result explained Conclusion

Global Observability of Switched DAEs

System
x

u y

Definition (Global observability)

The (swDAE) is (globally) observable :⇔
∀ solutions (u1, x1, y1), (u2, x2, y2) : (u1, y1) ≡ (u2, y2) ⇒ x1 ≡ x2

Proposition (0-distinguishability)

The (swDAE) is observable if, and only if,

y ≡ 0 and u ≡ 0 ⇒ x ≡ 0.

Hence consider in the following (swDAE) without inputs:

Eσẋ = Aσx

y = Cσx
and observability question: y ≡ 0

?⇒ x ≡ 0
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Motivating example

System 1:1 0 0
0 0 0
0 0 1

 ẋ =

0 0 0
0 1 0
0 0 0

x
y =

[
0 0 1

]
x

y = x3, ẏ = ẋ3 = 0, x2 = 0, ẋ1 = 0
⇒ x1 unobservable

σ(·) : 1→ 2

Jump in x1 produces impulse in y
⇒ Observability

System 2:0 0 0
0 1 0
1 0 0

 ẋ =

1 0 0
0 0 0
0 0 1

x
y =

[
0 0 1

]
x

y = x3 = ẋ1, x1 = 0, ẋ2 = 0
⇒ x2 unobservable

σ(·) : 2→ 1

Jump in x2 no influence in y
⇒ x2 remains unobservable

Question

Epẋ = Apx+Bpu

y = Cpx+Dpu

not
observable

?⇒
Eσẋ = Aσx+Bσu

y = Cσx+Dσu
observable
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The main result

(E−, A−, C−)
(E+, A+, C+)

t

σ

t = 0

Theorem (Observability)

The (swDAE) with a single switch is observable if, and only if,

{0} = C− ∩ kerO− ∩ kerO−+ ∩ kerOimp−
+

What are these four subspace?
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Solutions of classical DAEs

Consider for now non-switched DAE
Eẋ = Ax.

Theorem (Weierstrass 1868)

(E,A) regular ⇔
∃S, T ∈ Rn×n invertible:

(SET, SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
,

N nilpotent

Corollary (for regular (E,A))

x solves Eẋ=Ax ⇔ x(t)=T

(
eJtv0

0

)
Consistency space: C(E,A) := T

(
∗
0

)

(E,A) =
([

0 4 0
1 0 0
0 0 0

]
,
[−4π −4 0
−1 4π 0
−1 −4 4

])

x1

x2

x3

T =
[
0 4 ∗
1 0 ∗
1 1 ∗

]
, J =

[−1 −4π
π −1

]
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The subspace C−

(E−, A−, C−)
(E+, A+, C+)

t

σ

t = 0

Property of solution

x solves Eσẋ = Aσx, then

x ≡ 0 ⇔ x(0−) = 0

x(0−) ∈ C− := C(E−,A−)

Reminder:

(S−E−T−, S−A−T−) =
([
I 0
0 N−

]
,
[
J− 0
0 I

])
and C(E−,A−) = T−

(
∗
0

)
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The differential projector

Let S, T ∈ Rn×n be invertible with (SET, SAT ) = ([ I 0
0 N ] , [ J 0

0 I ]).

Definition (Differential “projector”)

Πdiff
(E,A) := T

[
I 0
0 0

]
S and Adiff := Πdiff

(E,A)A

Following Implication holds:

x solves Eẋ = Ax ⇒ ẋ = Adiffx

Hence, with y = Cx,

y ≡ 0 ⇒ x(0) ∈ ker[C/CAdiff/C(Adiff)2/ · · · /C(Adiff)n−1]
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The spaces O+ and O−

(E−, A−, C−)
(E+, A+, C+)

t

σ

t = 0

Hence

y(−∞,0) ≡ 0 ⇒ x(0−) ∈ ker [C−/C−A
diff
− /C−(Adiff

− )2/ · · · /C−(Adiff
− )n−1]︸ ︷︷ ︸

:=O−

and

y(0,∞) ≡ 0 ⇒ x(0+) ∈ ker [C+/C+A
diff
+ /C+(Adiff

+ )2/ · · · /C+(Adiff
+ )n−1]︸ ︷︷ ︸

:=O+

Question: x(0+) ∈ kerO+ ⇒ x(0−) ∈ ?
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Consistency projector and O−+

Π+

x(0−)

x(0+)

C(E+,A+)

Assume (S+E+T+, S+A+T+) =
([
I 0
0 N+

]
,
[
J+ 0
0 I

])
:

Consistency projector

x(0+) = Π+x(0−) where

Π+ := T+

[
I 0
0 0

]
T−1+

x(0+) ∈ kerO+

⇒ x(0−) ∈ Π−1+ kerO+ = kerO+Π+︸ ︷︷ ︸
=:O−

+
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Main result revisited

Reminder of main result

The (swDAE) with a single switch is observable if, and only if,

{0} = C− ∩ kerO− ∩ kerO−+ ∩ kerOimp−
+ .

So far:

y(−∞,0) = 0 ∧ y(0,∞) = 0 ⇒ x(0−) ∈ C− ∩ kerO− ∩ kerO−+

where

O− = [C− / C−A
diff
− / C−(Adiff

− )2 / · · · / C−(Adiff
− )n−1]

and

O−+ = [C+ / C+A
diff
+ / C+(Adiff

+ )2 / · · · / C+(Adiff
+ )n−1]Π+
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The impulsive effect

Assume (S+E+T+, S+A+T+) =
([
I 0
0 N+

]
,
[
J+ 0
0 I

])
:

Definition (Impulse “projector”)

Πimp
+ := T+

[
0 0
0 I

]
S+ and E imp

+ := Πimp
+ E+

Impulsive part of solution:

x[0] =

n−1∑
i=0

(E imp
+ )i+1(x(0+)− x(0−))δ

(i)
0

Dirac impulses
Conclusion:

y[0] = 0 ⇒ C+x[0] = 0 ⇒ x(0+)− x(0−) ∈ kerOimp
+

where

Oimp
+ := [C+E

imp
+ /C+(E imp

+ )2 / · · · /C+(E imp
+ )n2−1]
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The unobservable space

x(0+) = Π+x(0−) and x(0+)− x(0−) ∈ kerOimp
+ gives

x(0−) ∈ (Π+ − I)−1 kerOimp
+ = kerOimp

+ (Π+ − I)︸ ︷︷ ︸
=:Oimp−

+

Altogether:

y ≡ 0 ⇒ x(0−) ∈M := C− ∩ kerO− ∩ kerO−+ ∩ kerOimp−
+

Theorem (Unobservable subspace)

y ≡ 0 ⇔ x(0−) ∈M

Corollary: (swDAE) observable ⇔ M = {0}
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Example revisited

System 1:1 0 0
0 0 0
0 0 1

 ẋ =

0 0 0
0 1 0
0 0 0

x
y =

[
0 0 1

]
x

σ(·) : 1→ 2 gives

C− = span{e1, e3},
kerO− = span{e1, e2}
kerO−+ = span{e1, e2, e3},

kerOimp−
+ = span{e2}

⇒ M = {0}

System 2:0 0 0
0 1 0
1 0 0

 ẋ =

1 0 0
0 0 0
0 0 1

x
y =

[
0 0 1

]
x

σ(·) : 2→ 1 gives

C− = span{e2},
kerO− = span{e1, e2}
kerO−+ = span{e1, e2},

kerOimp−
+ = span{e1, e2, e3}

⇒ M = span{e2}
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Conclusions

We have studied observability of switched DAE

Eσẋ = Aσx+Bσu

y = Cσx+Dσu

Full characterization of observability for single switch case, based on
intersection of four subspaces:

Consistency: x(0−) ∈ C−
Left unobservability: y(i)(0−) = 0 ⇔ x(0−) ∈ kerO−
Jump unobservability: y(i)(0+) = 0 ⇔ x(0−) ∈ kerO−

+

Impulse unobervability: y[0] = 0 ⇔ x(0−) ∈ kerOimp−
+

Understanding of single switch case fundamental for general
switching signal (future work)
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Forward Observability

Definition (Forward observability)

The (swDAE) is forward observable :⇔ ∀ (u1, x1, y1), (u2, x2, y2) :
(u1, y1) = (u2, y2) ⇒ ∃T ≥ 0 : x1(T,∞) = x2(T,∞)

in general, weaker than global observability

presumably more useful for observer design

Theorem (Forward Observability for single switching)

The (swDAE) with single switching is forward observable if, and only if,

Π+(M) = {0}.

Example revisited:
σ(·) : 2→ 1, (swDAE) globally unobservable but

Π+(M) = {0} hence (swDAE) is forward observable
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General Class of Switching Signals

Let Mk := Ck ∩ kerOk ∩ kerO−k+1 ∩ kerOimp−
k+1 ,

Nm
m :=Mm

Nm
k−1 :=Mk−1 ∩Π−1k (exp (−Adiff

k τk)Nm
k ); 1 ≤ k ≤ m

Theorem (Global Observability)

(swDAE) is globally observable if, and only if, ∃ m ∈ N such that,

Nm
0 = {0}

Similarly, let Pk := Πk+1(Ck ∩ kerOk ∩ kerOimp−
k+1 ) ∩ kerOk+1,

Q0
0 = P0

Qk0 = Pk ∩Πk+1(exp(Ak+1τk+1)Qk−10 ), k ≥ 1

Theorem (Forward Observability)

(swDAE) is forward observable if, and only if, ∃ m ∈ N such that,

Qm0 = {0}
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