Switched differential algebraic equations: Jumps and impulses

Stephan Trenn
Jan C. Willems Center for Systems and Control
University of Groningen, Netherlands
Supported by NWO Vidi grant 639.032.733
Research seminar at University of Exeter, Penryn Campus, 09/07/2018, 13:00

Contents

Introduction

Switched DAEs: Solution Theory

Definition
Review: classical distribution theory
Restriction of distributions
Piecewise smooth distributions
Distributional solutions
Impulse-freeness

Observability

Definition
The single switch result
Calculation of the four subspaces
\mathfrak{C}_{-}
O_{-}and O_{+}^{-}
$O_{+}^{\text {imp }}$
Summary

Motivating example

inductivity law:

$$
L \frac{\mathrm{~d}}{\mathrm{~d} t} i=v
$$

switch dependent: $0=v-u$

$$
0=i
$$

Motivating example

Motivating example

$$
\begin{aligned}
& E_{1} \dot{x}=A_{1} x+B_{1} u \\
& \text { on }(-\infty, 0)
\end{aligned}
$$

$$
t \geq 0
$$

$$
\begin{aligned}
& E_{2} \dot{x}=A_{2} x+B_{2} u \\
& \text { on }[0, \infty)
\end{aligned}
$$

\rightarrow switched differential-algebraic equation

Solution of circuit example

$$
\begin{array}{rlrl}
t & <0 & t & \geq 0 \\
v & =u & & =0 \\
L \frac{\mathrm{~d}}{\mathrm{~d} t} i & =v & v & =L \frac{\mathrm{~d}}{\mathrm{~d} t} i
\end{array}
$$

Solution (assume constant input u):

Observations

$$
t \geq 0
$$

Observations

, $x\left(0^{-}\right) \neq 0 \quad$ inconsistent for $E_{2} \dot{x}=A_{2} x+B_{2} u$
, unique jump from $x\left(0^{-}\right)$to $x\left(0^{+}\right)$
, derivative of jump $=$ Dirac impulse appears in solution

Dirac impulse is "real"

Dirac impulse

Not just a mathematical artifact!

Drawing: Harry Winfield Secor, public domain

Contents

Introduction

Switched DAEs: Solution Theory

Definition
Review: classical distribution theory
Restriction of distributions
Piecewise smooth distributions
Distributional solutions
Impulse-freeness
Observability
Definition
The single switch result
Calculation of the four subspaces
\mathfrak{C}
O^{-}and O^{-}
$O_{+}^{\text {imp }}$
Summary

Definition

Switch \rightarrow Different DAE models (=modes) depending on time-varying position of switch

Definition (Switched DAE)

Switching signal $\sigma: \mathbb{R} \rightarrow\{1, \ldots, N\}$ picks mode at each time $t \in \mathbb{R}$:

$$
\begin{align*}
E_{\sigma(t)} \dot{x}(t) & =A_{\sigma(t)} x(t)+B_{\sigma(t)} u(t) \tag{swDAE}\\
y(t) & =C_{\sigma(t)} x(t)+D_{\sigma(t)} u(t)
\end{align*}
$$

Attention

Each mode might have different consistency spaces
\Rightarrow inconsistent initial values at each switch
\Rightarrow Dirac impulses, in particular distributional solutions

Definition

Switch \rightarrow Different DAE models (=modes) depending on time-varying position of switch

Definition (Switched DAE)

Switching signal $\sigma: \mathbb{R} \rightarrow\{1, \ldots, N\}$ picks mode at each time $t \in \mathbb{R}$:

$$
\begin{aligned}
E_{\sigma} \dot{x} & =A_{\sigma} x+B_{\sigma} u \\
y & =C_{\sigma} x+D_{\sigma} u
\end{aligned}
$$

Attention

Each mode might have different consistency spaces
\Rightarrow inconsistent initial values at each switch
\Rightarrow Dirac impulses, in particular distributional solutions

Distribution theory - basic ideas

Distributions - overview

, Generalized functions
) Arbitrarily often differentiable
, Dirac-Impulse δ is "derivative" of Heaviside step function $\mathbb{1}_{[0, \infty)}$
Two different formal approaches

1. Functional analytical: Dual space of the space of test functions
(L. Schwartz 1950)
2. Axiomatic: Space of all "derivatives" of continuous functions (J. Sebastião e Silva 1954)

Distributions - formal

Definition (Test functions)

$\mathcal{C}_{0}^{\infty}:=\{\varphi: \mathbb{R} \rightarrow \mathbb{R} \mid \varphi$ is smooth with compact support $\}$

Definition (Distributions)

$\mathbb{D}:=\left\{D: \mathcal{C}_{0}^{\infty} \rightarrow \mathbb{R} \mid D\right.$ is linear and continuous $\}$
Definition (Regular distributions)

$$
f \in \mathcal{L}_{1, \text { loc }}(\mathbb{R} \rightarrow \mathbb{R}): \quad f_{\mathbb{D}}: \mathcal{C}_{0}^{\infty} \rightarrow \mathbb{R}, \varphi \mapsto \int_{\mathbb{R}} f(t) \varphi(t) \mathrm{d} t \in \mathbb{D}
$$

Definition (Derivative)

$D^{\prime}(\varphi):=-D\left(\varphi^{\prime}\right)$

Dirac Impulse at $t_{0} \in \mathbb{R}$

$\delta_{t_{0}}: \mathcal{C}_{0}^{\infty} \rightarrow \mathbb{R}, \quad \varphi \mapsto \varphi\left(t_{0}\right)$

$$
\left(\mathbb{1}_{[0, \infty)_{\mathbb{D}}}\right)^{\prime}(\varphi)=-\int_{\mathbb{R}} \mathbb{1}_{[0, \infty)} \varphi^{\prime}=-\int_{0}^{\infty} \varphi^{\prime}=-(\varphi(\infty)-\varphi(0))=\varphi(0)
$$

Multiplication with functions

Definition (Multiplication with smooth functions)

$$
\alpha \in \mathcal{C}^{\infty}: \quad(\alpha D)(\varphi):=D(\alpha \varphi)
$$

$$
\begin{align*}
E_{\sigma} \dot{x} & =A_{\sigma} x+B_{\sigma} u \\
y & =C_{\sigma} x+D_{\sigma} u \tag{swDAE}
\end{align*}
$$

Coefficients not smooth

Problem: $E_{\sigma}, A_{\sigma}, C_{\sigma} \notin \mathcal{C}^{\infty}$
Observation, for $\sigma_{\left[t_{i}, t_{i+1}\right)} \equiv p_{i}, i \in \mathbb{Z}$:

$$
\begin{aligned}
E_{\sigma} \dot{x} & =A_{\sigma} x+B_{\sigma} u \\
y & =C_{\sigma} x+D_{\sigma} u
\end{aligned} \quad \Leftrightarrow \quad \forall i \in \mathbb{Z}: \begin{aligned}
\left(E_{p_{i}} \dot{x}\right)_{\left[t_{i}, t_{i+1}\right)} & =\left(A_{p_{i}} x+B_{p_{i}} u\right)_{\left[t_{i}, t_{i+1}\right)} \\
y_{\left[t_{i}, t_{i+1}\right)} & =\left(C_{p_{i}} x+D_{p_{i}} u\right)_{\left[t_{i}, t_{i+1}\right)}
\end{aligned}
$$

New question: Restriction of distributions

Desired properties of distributional restriction

Distributional restriction:

$$
\{M \subseteq \mathbb{R} \mid M \text { interval }\} \times \mathbb{D} \rightarrow \mathbb{D}, \quad(M, D) \mapsto D_{M}
$$

and for each interval $M \subseteq \mathbb{R}$

1. $\quad D \mapsto D_{M}$ is a projection (linear and idempotent)
2. $\forall f \in \mathcal{L}_{1, \text { loc }}: \quad\left(f_{\mathbb{D}}\right)_{M}=\left(f_{M}\right)_{\mathbb{D}}$
3. $\forall \varphi \in \mathcal{C}_{0}^{\infty}: \quad\left[\begin{array}{cll}\operatorname{supp} \varphi \subseteq M & \Rightarrow & D_{M}(\varphi)=D(\varphi) \\ \operatorname{supp} \varphi \cap M=\varnothing & \Rightarrow & D_{M}(\varphi)=0\end{array}\right]$
4. $\left(M_{i}\right)_{i \in \mathbb{N}}$ pairwise disjoint, $M=\bigcup_{i \in \mathbb{N}} M_{i}$:

$$
D_{M}=\sum_{i \in \mathbb{N}} D_{M_{i}}, \quad D_{M_{1} \cup M_{2}=D_{M_{1}}+D_{M_{2}}}, \quad\left(D_{M_{1}}\right)_{M_{2}}=0
$$

Theorem ([T. 2009])
Such a distributional restriction does not exist.

Proof of non-existence of restriction

Consider the following (well defined!) distribution:

$$
D:=\sum_{i \in \mathbb{N}} d_{i} \delta_{d_{i}}, \quad d_{i}:=\frac{(-1)^{i}}{i+1}
$$

Restriction should give

$$
D_{[0, \infty)}=\sum_{k \in \mathbb{N}} d_{2 k} \delta_{d_{2 k}}
$$

Choose $\varphi \in \mathcal{C}_{0}^{\infty}$ such that $\varphi_{[0,1]} \equiv 1$:

$$
D_{[0, \infty)}(\varphi)=\sum_{k \in \mathbb{N}} d_{2 k}=\sum_{k \in \mathbb{N}} \frac{1}{2 k+1}=\infty
$$

Dilemma

Switched DAEs
, Examples: distributional solutions
, Multiplication with non-smooth coefficients
, Or: Restriction on intervals

Distributions
, Distributional restriction not possible
, Multiplication with non-smooth coefficients not possible
, Initial value problems cannot be formulated

Underlying problem

Space of distributions too big.

Piecewise smooth distributions

Define a suitable smaller space:
Definition (Piecewise smooth distributions $\mathbb{D}_{\mathrm{pw}} \mathcal{C}^{\infty},[\mathrm{T} .2009]$)

$$
\mathbb{D}_{\mathrm{pw}} \infty:=\left\{\begin{array}{l|l}
f_{\mathbb{D}}+\sum_{t \in T} D_{t} & \begin{array}{l}
f \in \mathcal{C}_{\mathrm{pw}}^{\infty}, \\
T \subseteq \mathbb{R} \text { locally finite }, \\
\forall t \in T: D_{t}=\sum_{i=0}^{n_{t}} a_{i}^{t} \delta_{t}^{(i)}
\end{array}
\end{array}\right\}
$$

Properties of $\mathbb{D}_{\mathrm{pwC}}{ }^{\infty}$

, $\mathcal{C}_{\mathrm{pw}}^{\infty} " \subseteq " \mathbb{D}_{\mathrm{pw}} \mathcal{C}^{\infty} \quad$ and $\quad D \in \mathbb{D}_{\mathrm{pwC}} \infty \Rightarrow D^{\prime} \in \mathbb{D}_{\mathrm{pw}} \mathcal{C}^{\infty}$
, Well definded restriction $\mathbb{D}_{\mathrm{pw}} \mathcal{C}^{\infty} \rightarrow \mathbb{D}_{\mathrm{pw}} \mathcal{C}^{\infty}$

$$
D=f_{\mathbb{D}}+\sum_{t \in T} D_{t} \quad \mapsto \quad D_{M}:=\left(f_{M}\right)_{\mathbb{D}}+\sum_{t \in T \cap M} D_{t}
$$

, Multiplication with $\alpha=\sum_{i \in \mathbb{Z}} \alpha_{i\left[t_{i}, t_{i+1}\right)} \in \mathcal{C}_{\mathrm{pw}}^{\infty}$ well defined:

$$
\alpha D:=\sum_{i \in \mathbb{Z}} \alpha_{i} D_{\left[t_{i}, t_{i+1}\right)}
$$

, Evaluation at $t \in \mathbb{R}: D\left(t^{-}\right):=f\left(t^{-}\right), D\left(t^{+}\right):=f\left(t^{+}\right)$
, Impulses at $t \in \mathbb{R}: D[t]:= \begin{cases}D_{t}, & t \in T \\ 0, & t \notin T\end{cases}$

Application to (swDAE)

(x, u) solves $(s w D A E) \quad: \Leftrightarrow \quad(s w D A E)$ holds in $\mathbb{D}_{\mathrm{pw}} \mathcal{C}^{\infty}$

Relevant questions

$$
\begin{align*}
E_{\sigma} \dot{x} & =A_{\sigma} x+B_{\sigma} u \\
y & =C_{\sigma} x+D_{\sigma} u \tag{swDAE}
\end{align*}
$$

Piecewise-smooth distributional solution framework

$x \in \mathbb{D}_{\mathrm{pw}} \boldsymbol{\mathcal { C }}^{\infty}, u \in \mathbb{D}_{\mathrm{pw}}{ }^{m} \mathcal{C}^{\infty}, y \in \mathbb{D}_{\mathrm{pw}}{ }^{p} \mathcal{C}^{\infty}$
, Existence and uniqueness of solutions?
) Jumps and impulses in solutions?
) Conditions for impulse free solutions?
, Control theoretical questions

- Stability and stabilization
- Observability and observer design
- Controllability and controller design

Existence and uniqueness of solutions for (swDAE)

$$
E_{\sigma} \dot{x}=A_{\sigma} x+B_{\sigma} u
$$

Basic assumptions

, $\sigma \in \Sigma_{0}:=\left\{\sigma: \mathbb{R} \rightarrow\{1, \ldots, N\} \left\lvert\, \begin{array}{l}\sigma \text { is piecewise constant and } \\ \left.\sigma\right|_{(-\infty, 0)} \text { is constant }\end{array}\right.\right\}$.
, $\left(E_{p}, A_{p}\right)$ is regular $\forall p \in\{1, \ldots, N\}$, i.e. $\operatorname{det}\left(s E_{p}-A_{p}\right) \not \equiv 0$

Theorem (T. 2009)

Consider (swDAE) with regular $\left(E_{p}, A_{p}\right)$. Then

$$
\forall u \in \mathbb{D}_{\mathrm{pw}}^{m} \mathcal{C}_{\infty} \forall \sigma \in \Sigma_{0} \exists \text { solution } x \in \mathbb{D}_{\mathrm{pw} \mathcal{C}^{\infty}}^{n}
$$

and $x\left(0^{-}\right)$uniquely determines x.

Inconsistent initial values

$$
E \dot{x}=A x+B u, \quad x(0)=x^{0} \in \mathbb{R}^{n}
$$

Inconsistent initial value $=$ special switched DAE

$$
\begin{array}{rlr}
\dot{x}_{(-\infty, 0)} & =0, & x\left(0^{-}\right)=x^{0} \\
(E \dot{x})_{[0, \infty)} & =(A x+B u)_{[0, \infty)} &
\end{array}
$$

Corollary (Consistency projector)

Exist unique consistency projector $\Pi_{(E, A)}$ such that

$$
x\left(0^{+}\right)=\Pi_{(E, A)} x^{0}
$$

$\Pi_{(E, A)}$ can easily be calculated via the Wong sequences [T. 2009].

Sufficient conditions for impulse-freeness

Question

When are all solutions of homogenous (swDAE) $E_{\sigma} \dot{x}=A_{\sigma} x$ impulse free?
Note: Jumps are OK.

Lemma (Sufficient conditions)
, $\left(E_{p}, A_{p}\right)$ all have index one (i.e. $\left(s E_{p}-A_{p}\right)^{-1}$ is proper) $\Rightarrow \quad(s w D A E)$ impulse free
) all consistency spaces of (E_{p}, A_{p}) coincide $\Rightarrow \quad(s w D A E)$ impulse free

Characterization of impulse-freeness

Theorem (Impulse-freeness, [T. 2009])
The switched DAE $E_{\sigma} \dot{x}=A_{\sigma} x$ is impulse free $\forall \sigma \in \Sigma_{0}$

$$
\Leftrightarrow \quad E_{q}\left(I-\Pi_{q}\right) \Pi_{p}=0 \quad \forall p, q \in\{1, \ldots, N\}
$$

where $\Pi_{p}:=\Pi_{\left(E_{p}, A_{p}\right)}, p \in\{1, \ldots, N\}$ is the p-th consistency projector.

Remark

, Index-1-case $\Rightarrow E_{q}\left(I-\Pi_{q}\right)=0 \forall q$
, Consistency spaces equal $\Rightarrow\left(I-\Pi_{q}\right) \Pi_{p}=0 \forall p, q$

Contents

Introduction
Switched DAEs: Solution Theory
Definition
Review: classical distribution theory
Restriction of distributions
Piecewise smooth distributions
Distributional solutions
Impulse-freeness

Observability

Definition
The single switch result
Calculation of the four subspaces

```
O- and O+
Oimp
```

Summary

Global Observability of Switched DAEs

Definition (Global observability)

(swDAE) with given σ is (globally) observable $: \Leftrightarrow$
\forall solutions $\left(u_{1}, x_{1}, y_{1}\right),\left(u_{2}, x_{2}, y_{2}\right): \quad\left(u_{1}, y_{1}\right) \equiv\left(u_{2}, y_{2}\right) \Rightarrow x_{1} \equiv x_{2}$
Lemma (0-distinguishability)
(swDAE) is observable if, and only if, $y \equiv 0$ and $u \equiv 0 \quad \Rightarrow \quad x \equiv 0$
Hence consider in the following (swDAE) without inputs:

$$
\begin{aligned}
E_{\sigma} \dot{x} & =A_{\sigma} x \\
y & =C_{\sigma} x
\end{aligned} \quad \text { and observability question: } \quad y \equiv 0 \stackrel{?}{\Rightarrow} x \equiv 0
$$

Motivating example

System 1:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \dot{x}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] x} \\
y=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] x \\
y=x_{3}, \dot{y}=\dot{x}_{3}=0, x_{2}=0, \dot{x}_{1}=0 \\
\Rightarrow x_{1} \text { unobservable }
\end{gathered}
$$

$$
\sigma(\cdot): 1 \rightarrow 2
$$

Jump in x_{1} produces impulse in y \Rightarrow Observability

System 2:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \dot{x}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] x} \\
y=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] x \\
y=x_{3}=\dot{x}_{1}, x_{1}=0, \dot{x}_{2}=0 \\
\Rightarrow x_{2} \text { unobservable }
\end{gathered}
$$

$$
\sigma(\cdot): 2 \rightarrow 1
$$

Jump in x_{2} no influence in y $\Rightarrow x_{2}$ remains unobservable

Question

$$
\begin{aligned}
E_{p} \dot{x} & =A_{p} x+B_{p} u & \text { not } \\
y & =C_{p} x+D_{p} u & \text { observable }
\end{aligned} \stackrel{?}{\Rightarrow} \quad E_{\sigma} \dot{x}=A_{\sigma} x+B_{\sigma} u \quad \text { y }=C_{\sigma} x+D_{\sigma} u \quad \text { observable }
$$

The single switch result

Theorem (Unobservable subspace, Tanwani \& T. 2010)
For (swDAE) with a single switch the following equivalence holds

$$
y \equiv 0 \quad \Leftrightarrow \quad x\left(0^{-}\right) \in \mathcal{M}
$$

where

$$
\mathcal{M}:=\mathfrak{C}_{-} \cap \operatorname{ker} O_{-} \cap \operatorname{ker} O_{+}^{-} \cap \operatorname{ker} O_{+}^{\mathrm{imp}}
$$

In particular: $\quad(\mathrm{swDAE})$ observable $\Leftrightarrow \mathcal{M}=\{0\}$.

The four subspaces

Unobservable subspace: $\mathcal{M}:=\mathfrak{C}_{-} \cap \operatorname{ker} O_{-} \cap \operatorname{ker} O_{+}^{-} \cap \operatorname{ker} O_{+}^{\mathrm{imp}}$, i.e.

$$
x\left(0^{-}\right) \in \mathcal{M} \quad \Leftrightarrow \quad y_{(-\infty, 0)} \equiv 0 \wedge y[0]=0 \wedge y_{(0, \infty)} \equiv 0
$$

The four spaces

, Consistency: $x\left(0^{-}\right) \in \mathfrak{C}_{-}$
, Left unobservability: $y_{(-\infty, 0)} \equiv 0 \Leftrightarrow x\left(0^{-}\right) \in \operatorname{ker} O_{-}$
, Right unobservability: $y_{(0, \infty)} \equiv 0 \Leftrightarrow x\left(0^{-}\right) \in \operatorname{ker} O_{+}^{-}$
, Impulse unobervability: $y[0]=0 \Leftrightarrow x\left(0^{-}\right) \in \operatorname{ker} O_{+}^{\text {imp }}$

Question

How to calculate these four spaces?

Wong sequences

Definition

Let $E, A \in \mathbb{R}^{m \times n}$. The corresponding Wong sequences of the pair (E, A) are:

$$
\begin{aligned}
\mathcal{V}_{0} & :=\mathbb{R}^{n}, & \mathcal{V}_{i+1} & :=A^{-1}\left(E \mathcal{V}_{i}\right), & & i=0,1,2,3, \ldots \\
\mathcal{W}_{0} & :=\{0\}, & \mathcal{W}_{j+1} & :=E^{-1} A\left(\mathcal{W}_{j}\right), & & j=0,1,2,3, \ldots
\end{aligned}
$$

Note: $M^{-1} \mathcal{S}:=\{x \mid M x \in \mathcal{S}\}$ and $M \mathcal{S}:=\{M x \mid x \in \mathcal{S}\}$
Clearly, $\exists i^{*}, j^{*} \in \mathbb{N}$

$$
\begin{aligned}
& \mathcal{V}_{0} \supset \mathcal{V}_{1} \supset \ldots \supset \mathcal{V}_{i^{*}}=\mathcal{V}_{i^{*}+1}=\mathcal{V}_{i^{*}+2}=\ldots \\
& \mathcal{W}_{0} \subset \mathcal{W}_{1} \subset \ldots \subset \mathcal{W}_{j^{*}}=\mathcal{W}_{j^{*}+1}=\mathcal{W}_{j^{*}+2}=\ldots
\end{aligned}
$$

Wong limits:

$$
\mathcal{V}^{*}:=\bigcap_{i \in \mathbb{N}} \mathcal{V}_{i}=\mathcal{V}_{i^{*}}
$$

$$
\mathcal{W}^{*}=\bigcup_{j \in \mathbb{N}} \mathcal{W}_{j}=\mathcal{W}_{j^{*}}
$$

Wong sequences and the QWF

Theorem (QWF [Berger, Ilchmann \& T. 2012])

The following statements are equivalent for square $E, A \in \mathbb{R}^{n \times n}$:
(i) (E, A) is regular
(ii) $\mathcal{V}^{*} \oplus \mathcal{W}^{*}=\mathbb{R}^{n}$
(iii) $E \mathcal{V}^{*} \oplus A \mathcal{W}^{*}=\mathbb{R}^{n}$

In particular, with $\operatorname{im} V=\mathcal{V}^{*}, \operatorname{im} W=\mathcal{W}^{*}$

$$
(E, A) \text { regular } \Rightarrow T:=[V, W] \text { and } S:=[E V, A W]^{-1} \text { invertible }
$$

and S, T yield quasi-Weierstrass form (QWF):

$$
(S E T, S A T)=\left(\left[\begin{array}{ll}
I & \\
& N
\end{array}\right],\left[\begin{array}{ll}
J & \\
& I
\end{array}\right]\right), N \text { nilpotent }
$$

Calculation of Wong sequences

Remark

Wong sequences can easily be calculated with Matlab even when the matrices still contain symbolic entries (like " R ", " L ", " C ").

```
function V=getPreImage(A,S)
% returns a basis of the preimage of A of the linear space spanned by
% the columns of S, i.e. im V = { x | Ax \in im S }
[m1,n1]=size(A); [m2,n2]=size(S);
if m1==m2
    H=null([A,S]);
    V=colspace(H(1:n1,:));
else
    error('Both matrices must have same number of rows');
end;
```


Consistency space

$$
x\left(0^{-}\right) \in \mathfrak{C}_{-} \cap \operatorname{ker} O_{-} \cap \operatorname{ker} O_{+}^{-} \cap \operatorname{ker} O_{+}^{\text {imp }-} \quad \Leftrightarrow \quad y \equiv 0
$$

Corollary from QWF

$$
\mathfrak{C}_{-}=\mathcal{V}_{-}^{*}
$$

where \mathcal{V}_{-}^{*} is the first Wong limit of $\left(E_{-}, A_{-}\right)$.

The differential projector

For regular (E, A) let $(S E T, S A T)=\left(\left[\begin{array}{cc}I & 0 \\ 0 & N\end{array}\right],\left[\begin{array}{ll}J & 0 \\ 0 & I\end{array}\right]\right)$.

Definition (Differential "projector")

$$
\Pi_{(E, A)}^{\text {diff }}:=T\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right] S \quad \text { and } \quad A^{\text {diff }}:=\Pi_{(E, A)}^{\text {diff }} A
$$

Following Implication holds:

$$
x \text { solves } E \dot{x}=A x \quad \Rightarrow \quad \dot{x}=A^{\text {diff }} x
$$

Hence, with $y=C x$,

$$
y \equiv 0 \quad \Rightarrow \quad x(0) \in \operatorname{ker}\left[C / C A^{\text {diff }} / C\left(A^{\text {diff }}\right)^{2} / \cdots / C\left(A^{\text {diff }}\right)^{n-1}\right]
$$

The spaces O_{-}and O_{+}

Hence

$$
y_{(-\infty, 0)} \equiv 0 \Rightarrow x\left(0^{-}\right) \in \operatorname{ker} \underbrace{\left[C_{-} / C_{-} A_{-}^{\text {diff }} / C_{-}\left(A_{-}^{\text {diff }}\right)^{2} / \cdots / C_{-}\left(A_{-}^{\text {diff }}\right)^{n-1}\right]}_{:=O_{-}}
$$

and

$$
\begin{aligned}
& \quad y_{(0, \infty)} \equiv 0 \Rightarrow x\left(0^{+}\right) \in \operatorname{ker} \underbrace{\left[C_{+} / C_{+} A_{+}^{\text {diff }} / C_{+}\left(A_{+}^{\text {diff }}\right)^{2} / \cdots / C_{+}\left(A_{+}^{\text {diff }}\right)^{n-1}\right]}_{:=O_{+}} \\
& \text {Question: } \quad x\left(0^{+}\right) \in \operatorname{ker} O_{+} \quad \Rightarrow \quad x\left(0^{-}\right) \in ?
\end{aligned}
$$

Consistency projector and O_{+}^{-}

Assume $\left(S_{+} E_{+} T_{+}, S_{+} A_{+} T_{+}\right)=\left(\left[\begin{array}{cc}I & 0 \\ 0 & N_{+}\end{array}\right],\left[\begin{array}{cc}J_{+} & 0 \\ 0 & I\end{array}\right]\right)$:

Consistency projector

$x\left(0^{+}\right)=\Pi_{+} x\left(0^{-}\right)$where

$$
\Pi_{+}:=T_{+}\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right] T_{+}^{-1}
$$

$$
\begin{aligned}
& x\left(0^{+}\right) \in \operatorname{ker} O_{+} \\
& \quad \Rightarrow x\left(0^{-}\right) \in \Pi_{+}^{-1} \operatorname{ker} O_{+}=\operatorname{ker} \underbrace{O_{+} \Pi_{+}}_{=: O_{+}^{-}}
\end{aligned}
$$

The impulsive effect

Assume $\left(S_{+} E_{+} T_{+}, S_{+} A_{+} T_{+}\right)=\left(\left[\begin{array}{cc}I & 0 \\ 0 & N_{+}\end{array}\right],\left[\begin{array}{cc}J_{+} & 0 \\ 0 & I\end{array}\right]\right)$:

Definition (Impulse "projector")

$$
\Pi_{+}^{\mathrm{imp}}:=T_{+}\left[\begin{array}{cc}
0 & 0 \\
0 & I
\end{array}\right] S_{+} \quad \text { and } \quad E_{+}^{\mathrm{imp}}:=\Pi_{+}^{\mathrm{imp}} E_{+}
$$

Impulsive part of solution:

Conclusion:

$$
x[0]=-\sum_{i=0}^{n-1}\left(E_{+}^{\mathrm{imp}}\right)^{i+1} x\left(0^{-}\right) \delta_{0}^{(i)}
$$

Dirac impulses

$$
y[0]=0 \quad \Rightarrow \quad C_{+} x[0]=0 \quad \Rightarrow \quad x\left(0^{-}\right) \in \operatorname{ker} O_{+}^{\mathrm{imp}}
$$

where

$$
O_{+}^{\mathrm{imp}}:=\left[C_{+} E_{+}^{\mathrm{imp}} / C_{+}\left(E_{+}^{\mathrm{imp}}\right)^{2} / \cdots / C_{+}\left(E_{+}^{\mathrm{imp}}\right)^{n-1}\right]
$$

Observability summary

$$
\begin{aligned}
& \xrightarrow[t=0]{\left(E_{-}, A_{-}, C_{-}\right)}{ }^{\sigma_{\uparrow} \uparrow\left(E_{+}, A_{+}, C_{+}\right)} \\
& y \equiv 0 \quad \Leftrightarrow \quad x\left(0^{-}\right) \in \mathfrak{C}_{-} \cap \operatorname{ker} O_{-} \cap \operatorname{ker} O_{+}^{-} \cap \operatorname{ker} O_{+}^{\mathrm{imp}-}
\end{aligned}
$$

with
, $\mathfrak{C}_{-}=\mathcal{V}_{-}^{*}$ (first Wong limit)
, $O_{-}=\left[C_{-} / C_{-} A_{-}^{\text {diff }} / C_{-}\left(A_{-}^{\text {diff }}\right)^{2} / \cdots / C_{-}\left(A_{-}^{\text {diff }}\right)^{n-1}\right]$
, $O_{+}^{-}=\left[C_{+} / C_{+} A_{+}^{\text {diff }} / C_{+}\left(A_{+}^{\text {diff }}\right)^{2} / \cdots / C_{+}\left(A_{+}^{\text {diff }}\right)^{n-1}\right] \Pi_{+}$
, $O_{+}^{\mathrm{imp}}=\left[C_{+} E_{+}^{\mathrm{imp}} / C_{+}\left(E_{+}^{\mathrm{imp}}\right)^{2} / \cdots / C_{+}\left(E_{+}^{\mathrm{imp}}\right)^{n-1}\right]$

Example revisited

System 1:

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \dot{x}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] x} \\
y=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] x \\
\sigma(\cdot): 1 \rightarrow 2 \text { gives } \\
\mathfrak{C}_{-}= \\
\operatorname{span}\left\{e_{1}, e_{3}\right\} \\
\operatorname{ker} O_{-}= \\
\operatorname{ker} O_{+}^{-}= \\
\operatorname{span}\left\{e_{1}, e_{2}\right\} \\
\operatorname{ker} O_{+}^{\text {imp }}= \\
=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\} \\
\Rightarrow \quad \mathcal{M}=\{0\}
\end{gathered}
$$

System 2:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \dot{x}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] x} \\
& y=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] x \\
& \sigma(\cdot): 2 \rightarrow 1 \text { gives } \\
& \mathfrak{C}_{-}=\operatorname{span}\left\{e_{2}\right\}, \\
& \operatorname{ker} O_{-}=\operatorname{span}\left\{e_{1}, e_{2}\right\} \\
& \operatorname{ker} O_{+}^{-}=\operatorname{span}\left\{e_{1}, e_{2}\right\} \text {, } \\
& \operatorname{ker} O_{+}^{\mathrm{imp}}=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\} \\
& \Rightarrow \quad \mathcal{M}=\operatorname{span}\left\{e_{2}\right\}
\end{aligned}
$$

Overall summary

$$
\begin{align*}
E_{\sigma} \dot{x} & =A_{\sigma} x+B_{\sigma} u \tag{swDAE}\\
y & =C_{\sigma} x+D_{\sigma} u
\end{align*}
$$

Piecewise-smooth distributional solution framework

$x \in \mathbb{D}_{\mathrm{pw}}{ }^{n} \mathcal{C}^{\infty}, u \in \mathbb{D}_{\mathrm{pw}} \mathrm{C}^{\infty}, y \in \mathbb{D}_{\mathrm{pw}}{ }^{p} \mathcal{C}^{\infty}$
, Existence and uniqueness of solutions? \checkmark
) Jumps and impulses in solutions? \checkmark
, Conditions for impulse free solutions? \checkmark
, Control theoretical questions

- Stability \checkmark and stabilization ?
- Observability $\sqrt{ }$ and observer design \checkmark
- Controllability \checkmark and controller design ?
- Extension to nonlinear case ?

