

faculty of science and engineering bernoulli institute for mathematics, computer science and artificial intelligence

# Switched differential algebraic equations: Jumps and impulses

#### Stephan Trenn

Jan C. Willems Center for Systems and Control University of Groningen, Netherlands

Supported by NWO Vidi grant 639.032.733

Research seminar at University of Exeter, Penryn Campus, 09/07/2018, 13:00

| 邀 / | university of | Introduction |
|-----|---------------|--------------|
| ÷ / | groningen     |              |

Summary

## Contents

#### Introduction

#### Switched DAEs: Solution Theory

Definition Review: classical distribution theory Restriction of distributions Piecewise smooth distributions Distributional solutions Impulse-freeness

#### Observability

Definition The single switch result Calculation of the four subspaces  $\stackrel{\mathfrak{C}_{-}}{O_{-}}$  and  $O_{+}^{-}$  $O_{+}^{imp}$ 

#### Summary



### Motivating example

t < 0

 $u(\cdot) \begin{pmatrix} + \\ - \end{pmatrix} \downarrow L$ 



 $t \ge 0$ 

inductivity law: switch dependent: 0 =

0 = v - u

 $L\frac{d}{dt}i = v$ 

0 = i



Switched DAEs: Solution Theory

Observability

Summary

## Motivating example

t < 0









Switched DAEs: Solution Theory

Observability

Summary

## Motivating example

t < 0

 $u(\cdot) \begin{pmatrix} + \\ - \\ - \\ \end{pmatrix} U$ 



 $E_1 \dot{x} = A_1 x + B_1 u$ on  $(-\infty, 0)$   $E_2 \dot{x} = A_2 x + B_2 u$ on  $[0, \infty)$ 

 $\rightarrow$  switched differential-algebraic equation





#### Observations

- >  $x(0^-) \neq 0$  inconsistent for  $E_2 \dot{x} = A_2 x + B_2 u$
- > unique jump from  $x(0^-)$  to  $x(0^+)$
- > derivative of jump = Dirac impulse appears in solution



Switched DAEs: Solution Theory

Observability

Summary

## Dirac impulse is "real"

#### Dirac impulse

#### Not just a mathematical artifact!



Drawing: Harry Winfield Secor, public domain



Foto: Ralf Schumacher, CC-BY-SA 3.0

| 澎  |   | university of | Introduction |
|----|---|---------------|--------------|
| 60 | / | groningen     |              |

Summary

## Contents

Introduction

#### Switched DAEs: Solution Theory

Definition Review: classical distribution theory Restriction of distributions Piecewise smooth distributions Distributional solutions Impulse-freeness

#### Observability

```
Definition
The single switch result
Calculation of the four subspaces
\mathcal{C}_{-}
O_{-} and O_{+}^{-}
O_{+}^{imp}
```

#### Summary

| university of groningen | Introduction | Switched DAEs: Solution Theory | Observability | Summary |
|-------------------------|--------------|--------------------------------|---------------|---------|
|                         |              |                                |               |         |

### Definition

 $\begin{array}{l} \mathsf{Switch} \to \mathsf{Different} \ \mathsf{DAE} \ \mathsf{models} \ (= \mathsf{modes}) \\ & \mathsf{depending} \ \mathsf{on} \ \mathsf{time-varying} \ \mathsf{position} \ \mathsf{of} \ \mathsf{switch} \end{array}$ 

Definition (Switched DAE)

Switching signal  $\sigma : \mathbb{R} \to \{1, \dots, N\}$  picks mode at each time  $t \in \mathbb{R}$ :

$$\begin{split} E_{\sigma(t)}\dot{x}(t) &= A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t) \\ y(t) &= C_{\sigma(t)}x(t) + D_{\sigma(t)}u(t) \end{split} \tag{swDAE}$$

#### Attention

Each mode might have different consistency spaces

- $\Rightarrow$  inconsistent initial values at each switch
- $\Rightarrow$  Dirac impulses, in particular distributional solutions

| university of groningen | Introduction | Switched DAEs: Solution Theory | Observability | Summary |
|-------------------------|--------------|--------------------------------|---------------|---------|
|                         |              |                                |               |         |

### Definition

 $\begin{array}{l} \mathsf{Switch} \to \mathsf{Different} \ \mathsf{DAE} \ \mathsf{models} \ (= \mathsf{modes}) \\ & \mathsf{depending} \ \mathsf{on} \ \mathsf{time-varying} \ \mathsf{position} \ \mathsf{of} \ \mathsf{switch} \end{array}$ 

Definition (Switched DAE)

Switching signal  $\sigma : \mathbb{R} \to \{1, \dots, N\}$  picks mode at each time  $t \in \mathbb{R}$ :

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

$$y = C_{\sigma}x + D_{\sigma}u$$
(swDAE)

#### Attention

Each mode might have different consistency spaces

- $\Rightarrow$  inconsistent initial values at each switch
- $\Rightarrow$  Dirac impulses, in particular distributional solutions

Summary

## Distribution theory - basic ideas

### Distributions - overview

- > Generalized functions
- > Arbitrarily often differentiable
- > Dirac-Impulse  $\delta$  is "derivative" of Heaviside step function  $\mathbbm{1}_{[0,\infty)}$

#### Two different formal approaches

- Functional analytical: Dual space of the space of test functions (L. Schwartz 1950)
- Axiomatic: Space of all "derivatives" of continuous functions (J. Sebastião e Silva 1954)

### Distributions - formal

Definition (Test functions)

 $\mathcal{C}_0^{\infty} := \{ \varphi : \mathbb{R} \to \mathbb{R} \mid \varphi \text{ is smooth with compact support} \}$ 

### Definition (Distributions)

 $\mathbb{D} := \{ D : \mathcal{C}_0^\infty \to \mathbb{R} \mid D \text{ is linear and continuous} \}$ 

Definition (Regular distributions)

$$f\in\mathcal{L}_{1,\mathrm{loc}}(\mathbb{R}\to\mathbb{R}):\quad f_{\mathbb{D}}:\mathcal{C}_0^\infty\to\mathbb{R},\ \varphi\mapsto\int_{\mathbb{R}}f(t)\varphi(t)\mathrm{d}t\in\mathbb{D}$$

Definition (Derivative)  $D'(\varphi) := -D(\varphi')$  Dirac Impulse at  $t_0 \in \mathbb{R}$  $\delta_{t_0} : \mathcal{C}_0^{\infty} \to \mathbb{R}, \quad \varphi \mapsto \varphi(t_0)$ 

$$(\mathbb{1}_{[0,\infty)\mathbb{D}})'(\varphi) = -\int_{\mathbb{R}} \mathbb{1}_{[0,\infty)}\varphi' = -\int_0^\infty \varphi' = -(\varphi(\infty) - \varphi(0)) = \varphi(0)$$



Summary

## Multiplication with functions

Definition (Multiplication with smooth functions)

 $\alpha\in\mathcal{C}^\infty:\quad (\alpha D)(\varphi):=D(\alpha\varphi)$ 

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

$$y = C_{\sigma}x + D_{\sigma}u$$
(swDAE)

#### Coefficients not smooth

Problem:  $E_{\sigma}, A_{\sigma}, C_{\sigma} \notin \mathcal{C}^{\infty}$ 

$$\begin{aligned} \text{Observation, for } \sigma_{[t_i,t_{i+1})} &\equiv p_i, \ i \in \mathbb{Z}: \\ E_{\sigma}\dot{x} &= A_{\sigma}x + B_{\sigma}u \\ y &= C_{\sigma}x + D_{\sigma}u \end{aligned} \Leftrightarrow \quad \forall i \in \mathbb{Z}: \begin{array}{c} (E_{p_i}\dot{x})_{[t_i,t_{i+1})} &= (A_{p_i}x + B_{p_i}u)_{[t_i,t_{i+1})} \\ y_{[t_i,t_{i+1})} &= (C_{p_i}x + D_{p_i}u)_{[t_i,t_{i+1})} \end{aligned}$$

New question: Restriction of distributions

## Desired properties of distributional restriction

Distributional restriction:

$$\{M \subseteq \mathbb{R} \mid M \text{ interval } \} \times \mathbb{D} \to \mathbb{D}, \quad (M, D) \mapsto D_M$$

and for each interval  $M\subseteq \mathbb{R}$ 

- 1.  $D \mapsto D_M$  is a projection (linear and idempotent)
- 2.  $\forall f \in \mathcal{L}_{1,\mathsf{loc}}: (f_{\mathbb{D}})_M = (f_M)_{\mathbb{D}}$
- 3.  $\forall \varphi \in \mathcal{C}_0^\infty$ :  $\begin{bmatrix} \operatorname{supp} \varphi \subseteq M \Rightarrow D_M(\varphi) = D(\varphi) \\ \operatorname{supp} \varphi \cap M = \emptyset \Rightarrow D_M(\varphi) = 0 \end{bmatrix}$

4.  $(M_i)_{i \in \mathbb{N}}$  pairwise disjoint,  $M = \bigcup_{i \in \mathbb{N}} M_i$ :

$$D_M = \sum_{i \in \mathbb{N}} D_{M_i}, \quad D_{M_1 \cup M_2 = D_{M_1} + D_{M_2}}, \quad (D_{M_1})_{M_2} = 0$$

Theorem ([T. 2009])

Such a distributional restriction does not exist.



Stephan Trenn (Jan C. Willems Center, U Groningen)

Switched differential algebraic equations: Jumps and impulses (12 / 36)

| *  |   | university of | Introduction |
|----|---|---------------|--------------|
| ÷. | / | groningen     |              |

Summary

## Dilemma

Switched DAEs

- > Examples: distributional solutions
- Multiplication with non-smooth coefficients
- > Or: Restriction on intervals

#### Distributions

- > Distributional restriction not possible
- Multiplication with non-smooth coefficients not possible
- > Initial value problems cannot be formulated

### Underlying problem

Space of distributions too big.



### Piecewise smooth distributions

Define a suitable smaller space:

Definition (Piecewise smooth distributions  $\mathbb{D}_{pw\mathcal{C}^{\infty}}$ , [T. 2009])

$$\mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}} := \left\{ f_{\mathbb{D}} + \sum_{t \in T} D_t \; \middle| \; \begin{array}{l} f \in \mathcal{C}_{\mathsf{pw}}^{\infty}, \\ T \subseteq \mathbb{R} \text{ locally finite}, \\ \forall t \in T : D_t = \sum_{i=0}^{n_t} a_i^t \delta_t^{(i)} \end{array} \right.$$



| viniversity of groningen | Introduction | Switched DAEs: Solution Theory | Observability | Summary |
|--------------------------|--------------|--------------------------------|---------------|---------|
|                          |              |                                |               |         |

## Properties of $\mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}}$

薵 /

 $\label{eq:constraint} \mathcal{C}^\infty_{\mathsf{pw}} \ ``\subseteq ``\mathbb{D}_{\mathsf{pw}\mathcal{C}^\infty} \quad \text{and} \quad D \in \mathbb{D}_{\mathsf{pw}\mathcal{C}^\infty} \Rightarrow D' \in \mathbb{D}_{\mathsf{pw}\mathcal{C}^\infty}$ 

 $\ \ \, \text{ Well definded restriction } \mathbb{D}_{pw\mathcal{C}^\infty} \to \mathbb{D}_{pw\mathcal{C}^\infty}$ 

$$D = f_{\mathbb{D}} + \sum_{t \in T} D_t \quad \mapsto \quad D_M := (f_M)_{\mathbb{D}} + \sum_{t \in T \cap M} D_t$$

) Multiplication with  $\alpha = \sum_{i \in \mathbb{Z}} \alpha_{i[t_i, t_{i+1})} \in \mathcal{C}^{\infty}_{pw}$  well defined:

$$\alpha D := \sum_{i \in \mathbb{Z}} \alpha_i D_{[t_i, t_{i+1})}$$

> Evaluation at  $t \in \mathbb{R}$ :  $D(t^-) := f(t^-), D(t^+) := f(t^+)$ 

> Impulses at 
$$t \in \mathbb{R}$$
:  $D[t] := \begin{cases} D_t, & t \in T \\ 0, & t \notin T \end{cases}$ 

Application to (swDAE) (x, u) solves (swDAE)  $:\Leftrightarrow$  (swDAE) holds in  $\mathbb{D}_{pwC^{\infty}}$ 



## Relevant questions

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

$$y = C_{\sigma}x + D_{\sigma}u$$
(swDAE)

#### Piecewise-smooth distributional solution framework

$$x\in\mathbb{D}_{\mathrm{pw}\mathcal{C}^{\infty}}^{n}$$
 ,  $\,u\in\mathbb{D}_{\mathrm{pw}\mathcal{C}^{\infty}}^{m}$  ,  $\,y\in\mathbb{D}_{\mathrm{pw}\mathcal{C}^{\infty}}^{p}$ 

- > Existence and uniqueness of solutions?
- > Jumps and impulses in solutions?
- > Conditions for impulse free solutions?
- > Control theoretical questions
  - Stability and stabilization
  - Observability and observer design
  - Controllability and controller design

| *     | ∠ university of | Introduction | Switched DAEs: Solution Theory | Observability |
|-------|-----------------|--------------|--------------------------------|---------------|
| - 😽 / | groningen       |              |                                |               |

Summary

## Existence and uniqueness of solutions for (swDAE)

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u \qquad (swDAE)$$

Basic assumptions

$$\begin{array}{l} \sigma \in \Sigma_0 := \left\{ \sigma : \mathbb{R} \to \{1, \dots, N\} \middle| \begin{array}{l} \sigma \text{ is piecewise constant and} \\ \sigma \middle|_{(-\infty,0)} \text{ is constant} \end{array} \right. \\ \left. \sigma \middle|_{(-\infty,0)} \text{ is constant} \right. \\ \left. \sigma \middle|_{(-\infty,0)} \text{ is constant} \right. \end{array}$$

#### Theorem (T. 2009)

Consider (swDAE) with regular  $(E_p, A_p)$ . Then

$$\forall \ u \in \mathbb{D}^m_{\mathsf{pw}\mathcal{C}^\infty} \ \forall \ \sigma \in \Sigma_0 \ \exists \ \text{solution} \ x \in \mathbb{D}^n_{\mathsf{pw}\mathcal{C}^\infty}$$

and  $x(0^-)$  uniquely determines x.

| 実          | ∕ university of | Introduction | Switched DAEs: Solution Theory | Observability | Summary |
|------------|-----------------|--------------|--------------------------------|---------------|---------|
| <b>8</b> / | groningen       |              |                                |               |         |
|            |                 |              |                                |               |         |

### Inconsistent initial values

$$E\dot{x} = Ax + Bu, \quad x(0) = x^0 \in \mathbb{R}^n$$

Inconsistent initial value = special switched DAE

$$\dot{x}_{(-\infty,0)} = 0,$$
  $x(0^{-}) = x^{0}$   
 $(E\dot{x})_{[0,\infty)} = (Ax + Bu)_{[0,\infty)}$ 

Corollary (Consistency projector)

Exist unique consistency projector  $\Pi_{(E,A)}$  such that

$$x(0^+) = \Pi_{(E,A)} x^0$$

 $\Pi_{(E,A)}$  can easily be calculated via the Wong sequences [T. 2009].

# Sufficient conditions for impulse-freeness

#### Question

When are all solutions of homogenous (swDAE)  $E_{\sigma}\dot{x} = A_{\sigma}x$  impulse free?

Note: Jumps are OK.

Lemma (Sufficient conditions)

- >  $(E_p, A_p)$  all have index one (i.e.  $(sE_p A_p)^{-1}$  is proper)  $\Rightarrow$  (swDAE) impulse free
- > all consistency spaces of  $(E_p, A_p)$  coincide  $\Rightarrow$  (swDAE) impulse free

Summary

## Characterization of impulse-freeness

Theorem (Impulse-freeness, [T. 2009])

The switched DAE  $E_{\sigma}\dot{x} = A_{\sigma}x$  is impulse free  $\forall \sigma \in \Sigma_0$ 

 $\Leftrightarrow \quad E_q(I - \Pi_q)\Pi_p = 0 \quad \forall p, q \in \{1, \dots, N\}$ 

where  $\Pi_p := \Pi_{(E_p, A_p)}$ ,  $p \in \{1, \ldots, N\}$  is the *p*-th consistency projector.

#### Remark

- > Index-1-case  $\Rightarrow$   $E_q(I \Pi_q) = 0 \ \forall q$
- > Consistency spaces equal  $\Rightarrow (I \Pi_q)\Pi_p = 0 \; \forall p,q$

Summary

## Contents

Introduction

#### Switched DAEs: Solution Theory

Definition

Review: classical distribution theory Restriction of distributions Piecewise smooth distributions Distributional solutions Impulse-freeness

#### Observability

Definition The single switch result Calculation of the four subspaces  $\mathcal{C}_{-}$ 

 $O_+^{\mathsf{imp}}$ 

Summary



## Global Observability of Switched DAEs



Definition (Global observability)

(swDAE) with given  $\sigma$  is (globally) observable :  $\forall$  solutions  $(u_1, x_1, y_1), (u_2, x_2, y_2) : (u_1, y_1) \equiv (u_2, y_2) \Rightarrow x_1 \equiv x_2$ 

Lemma (0-distinguishability)

(swDAE) is observable if, and only if,  $y \equiv 0$  and  $u \equiv 0 \Rightarrow x \equiv 0$ 

Hence consider in the following (swDAE) without inputs:

$$\begin{bmatrix} E_{\sigma}\dot{x} = A_{\sigma}x \\ y = C_{\sigma}x \end{bmatrix} \text{ and observability question: } y \equiv 0 \stackrel{?}{\Rightarrow} x \equiv 0$$



 $\sigma(\cdot): 1 \to 2$ 

Jump in  $x_1$  produces impulse in y $\Rightarrow$  Observability

Question

 $\sigma(\cdot): 2 \to 1$ 

Jump in  $x_2$  no influence in  $y \Rightarrow x_2$  remains unobservable

 $\begin{array}{ccc} E_p \dot{x} = A_p x + B_p u & \text{not} \\ y = C_p x + D_p u & \text{observable} \end{array} \stackrel{?}{\Rightarrow} \begin{array}{ccc} E_\sigma \dot{x} = A_\sigma x + B_\sigma u \\ \Rightarrow & y = C_\sigma x + D_\sigma u \end{array} \text{observable}$ 

Summary

## The single switch result

$$\underbrace{(E_{-}, A_{-}, C_{-})}^{\sigma} \underbrace{(E_{+}, A_{+}, C_{+})}_{t = 0} \xrightarrow{\tau} t$$

Theorem (Unobservable subspace, Tanwani & T. 2010)

For (swDAE) with a single switch the following equivalence holds

 $y \equiv 0 \quad \Leftrightarrow \quad x(0^-) \in \mathcal{M}$ 

where

$$\mathcal{A} := \mathfrak{C}_{-} \cap \ker O_{-} \cap \ker O_{+}^{-} \cap \ker O_{+}^{\mathsf{imp}}$$

In particular: (swDAE) observable  $\Leftrightarrow \mathcal{M} = \{0\}.$ 

Л

#### What are these four subspace?



### The four subspaces

Unobservable subspace:  $\mathcal{M} := \mathfrak{C}_{-} \cap \ker O_{-} \cap \ker O_{+}^{-} \cap \ker O_{+}^{\mathsf{imp}}$ , i.e.

 $x(0^-) \in \mathcal{M} \quad \Leftrightarrow \quad y_{(-\infty,0)} \equiv 0 \ \land \ y[0] = 0 \ \land \ y_{(0,\infty)} \equiv 0$ 

#### The four spaces

- ) Consistency:  $x(0^-) \in \mathfrak{C}_-$
- > Left unobservability:  $y_{(-\infty,0)} \equiv 0 \iff x(0^-) \in \ker O_-$
- > Right unobservability:  $y_{(0,\infty)} \equiv 0 \iff x(0^-) \in \ker O^-_+$
- > Impulse unobervability:  $y[0] = 0 \iff x(0^-) \in \ker O^{\mathsf{imp}}_+$

#### Question

How to calculate these four spaces?

| university of groningen | Introduction | Switched DAEs: Solution Theory | Observability | Summary |  |
|-------------------------|--------------|--------------------------------|---------------|---------|--|
|                         |              |                                |               |         |  |
|                         |              |                                |               |         |  |

## Wong sequences

### Definition

Let  $E, A \in \mathbb{R}^{m \times n}$ . The corresponding Wong sequences of the pair (E, A) are:

$$\mathcal{V}_0 := \mathbb{R}^n, \qquad \mathcal{V}_{i+1} := A^{-1}(E\mathcal{V}_i), \qquad i = 0, 1, 2, 3, \dots$$
$$\mathcal{W}_0 := \{0\}, \qquad \mathcal{W}_{j+1} := E^{-1}A(\mathcal{W}_j), \qquad j = 0, 1, 2, 3, \dots$$

Note:  $M^{-1}\mathcal{S} := \{x \mid Mx \in \mathcal{S}\}$  and  $M\mathcal{S} := \{Mx \mid x \in \mathcal{S}\}$ 

Clearly,  $\exists i^*, j^* \in \mathbb{N}$ 

$$\mathcal{V}_0 \supset \mathcal{V}_1 \supset \ldots \supset \mathcal{V}_{i^*} = \mathcal{V}_{i^*+1} = \mathcal{V}_{i^*+2} = \ldots$$
$$\mathcal{W}_0 \subset \mathcal{W}_1 \subset \ldots \subset \mathcal{W}_{j^*} = \mathcal{W}_{j^*+1} = \mathcal{W}_{j^*+2} = \ldots$$

Wong limits:

$$\mathcal{V}^* := \bigcap_{i \in \mathbb{N}} \mathcal{V}_i = \mathcal{V}_{i^*}$$
$$\mathcal{W}^* = \bigcup_{j \in \mathbb{N}} \mathcal{W}_j = \mathcal{W}_{j^*}$$

| university of groningen | Introduction |
|-------------------------|--------------|
|-------------------------|--------------|

Summary

# Wong sequences and the QWF

Theorem (QWF [Berger, Ilchmann & T. 2012])

The following statements are equivalent for square  $E, A \in \mathbb{R}^{n \times n}$ :

- (i) (E, A) is regular
- (ii)  $\mathcal{V}^* \oplus \mathcal{W}^* = \mathbb{R}^n$
- (iii)  $E\mathcal{V}^* \oplus A\mathcal{W}^* = \mathbb{R}^n$

In particular, with  $\operatorname{im} V = \mathcal{V}^*$ ,  $\operatorname{im} W = \mathcal{W}^*$ 

(E, A) regular  $\Rightarrow$  T := [V, W] and  $S := [EV, AW]^{-1}$  invertible

and S, T yield quasi-Weierstrass form (QWF):

$$(SET, SAT) = \begin{pmatrix} \begin{bmatrix} I & \\ & N \end{bmatrix}, \begin{bmatrix} J & \\ & I \end{bmatrix} \end{pmatrix}, N \text{ nilpotent}$$

Summary

## Calculation of Wong sequences

#### Remark

Wong sequences can easily be calculated with Matlab even when the matrices still contain symbolic entries (like "R", "L", "C").

```
function V=getPreImage(A,S)
% returns a basis of the preimage of A of the linear space spanned by
% the columns of S, i.e. im V = { x | Ax \in im S }
[m1,n1]=size(A); [m2,n2]=size(S);
if m1==m2
    H=null([A,S]);
    V=colspace(H(1:n1,:));
else
    error('Both matrices must have same number of rows');
end;
```



Switched DAEs: Solution Theory

Observability

Summary

## Consistency space

$$x(0^{-}) \in \mathfrak{C}_{-} \cap \ker O_{-} \cap \ker O_{+}^{-} \cap \ker O_{+}^{\mathsf{imp}_{-}} \quad \Leftrightarrow \quad y \equiv 0$$

### Corollary from QWF

 $\mathfrak{C}_-=\mathcal{V}_-^*$ 

where  $\mathcal{V}_{-}^{*}$  is the first Wong limit of  $(E_{-}, A_{-})$ .



## The differential projector

$$\text{For regular } (E,A) \text{ let } (SET,SAT) = \left( \begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right).$$

Definition (Differential "projector")

$$\Pi^{\mathsf{diff}}_{(E,A)} := T \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} S \quad \mathsf{and} \quad \boxed{A^{\mathsf{diff}} := \Pi^{\mathsf{diff}}_{(E,A)} A}$$

Following Implication holds:

$$x \text{ solves } E\dot{x} = Ax \quad \Rightarrow \quad \dot{x} = A^{\mathsf{diff}}x$$

Hence, with y = Cx,

$$y \equiv 0 \quad \Rightarrow \quad x(0) \in \ker[C/CA^{\operatorname{diff}}/C(A^{\operatorname{diff}})^2/\cdots/C(A^{\operatorname{diff}})^{n-1}]$$

groningen Introduction

Switched DAEs: Solution Theory

Observability

Summary

# The spaces $O_-$ and $O_+$

$$(E_{-}, A_{-}, C_{-}) \xrightarrow{\sigma} (E_{+}, A_{+}, C_{+}) \xrightarrow{t = 0} t$$

#### Hence

$$y_{(-\infty,0)} \equiv 0 \quad \Rightarrow \quad x(0^{-}) \in \ker\left[\underbrace{C_{-}/C_{-}A_{-}^{\text{diff}}/C_{-}(A_{-}^{\text{diff}})^{2}/\cdots/C_{-}(A_{-}^{\text{diff}})^{n-1}}_{:=O_{-}}\right]$$

$$\begin{aligned} y_{(0,\infty)} &\equiv 0 \quad \Rightarrow \quad x(0^+) \in \ker \left[ C_+ / C_+ A_+^{\mathsf{diff}} / C_+ (A_+^{\mathsf{diff}})^2 / \cdots / C_+ (A_+^{\mathsf{diff}})^{n-1} \right] \\ \\ \mathsf{Question:} \quad x(0^+) \in \ker O_+ \quad \Rightarrow \quad x(0^-) \in \ ? \end{aligned}$$



Consistency projector  $x(0^+) = \Pi_+ x(0^-)$  where  $\Pi_+ := T_+ \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} T_+^{-1}$ 

$$x(0^+) \in \ker O_+$$
  
$$\Rightarrow x(0^-) \in \Pi_+^{-1} \ker O_+ = \ker \underbrace{O_+ \Pi_+}_{=: O_+^-}$$



Switched DAEs: Solution Theory

Observability

Summary

The impulsive effect

 $\text{Assume } (S_+E_+T_+,S_+A_+T_+) = \left( \left[\begin{smallmatrix} I & 0 \\ 0 & N_+ \end{smallmatrix}\right], \left[\begin{smallmatrix} J_+ & 0 \\ 0 & I \end{smallmatrix}\right] \right):$ 

Definition (Impulse "projector")

$$\Pi^{\mathsf{imp}}_{+} := T_{+} \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix} S_{+} \quad \mathsf{and} \quad \boxed{E^{\mathsf{imp}}_{+} := \Pi^{\mathsf{imp}}_{+} E_{+}}$$

Impulsive part of solution:

$$x[0] = -\sum_{i=0}^{n-1} (E^{\mathsf{imp}}_{+})^{i+1} x(0^{-}) \, \delta^{(i)}_{0}$$
 Dirac impulses

Conclusion:

$$y[0] = 0 \quad \Rightarrow \quad C_+ x[0] = 0 \quad \Rightarrow \quad \left| x(0^-) \in \ker O_+^{\mathsf{imp}} \right|$$

where

$$O_{+}^{\mathsf{imp}} := \left[ C_{+} E_{+}^{\mathsf{imp}} / C_{+} (E_{+}^{\mathsf{imp}})^{2} / \cdots / C_{+} (E_{+}^{\mathsf{imp}})^{n-1} \right]$$

Stephan Trenn (Jan C. Willems Center, U Groningen)

Switched differential algebraic equations: Jumps and impulses (33 / 36)

| university of groningen | Introduction |
|-------------------------|--------------|
|-------------------------|--------------|

Summary

# Observability summary

$$(E_-, A_-, C_-) \xrightarrow{\sigma} (E_+, A_+, C_+)$$

$$t = 0 \xrightarrow{t \to 0} t$$

$$y \equiv 0 \quad \Leftrightarrow \quad x(0^{-}) \in \mathfrak{C}_{-} \cap \ker O_{-} \cap \ker O_{+}^{-} \cap \ker O_{+}^{\mathsf{imp}-}$$

with

$$\begin{array}{l} & \mathfrak{C}_{-} = \mathcal{V}_{-}^{*} \text{ (first Wong limit)} \\ & O_{-} = [C_{-}/C_{-}A_{-}^{\mathsf{diff}}/C_{-}(A_{-}^{\mathsf{diff}})^{2}/\cdots/C_{-}(A_{-}^{\mathsf{diff}})^{n-1}] \\ & O_{+}^{-} = [C_{+}/C_{+}A_{+}^{\mathsf{diff}}/C_{+}(A_{+}^{\mathsf{diff}})^{2}/\cdots/C_{+}(A_{+}^{\mathsf{diff}})^{n-1}]\Pi_{+} \\ & O_{+}^{\mathsf{imp}} = [C_{+}E_{+}^{\mathsf{imp}}/C_{+}(E_{+}^{\mathsf{imp}})^{2}/\cdots/C_{+}(E_{+}^{\mathsf{imp}})^{n-1}] \end{array}$$

| groningen Introduction                                                              | Switched DAEs: Solution Theory                                                                                      | Observability                                                                                                                                                                 | Summary |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Example re                                                                          | evisited                                                                                                            |                                                                                                                                                                               | _       |
| Syste                                                                               | m 1:                                                                                                                | System 2:                                                                                                                                                                     |         |
| $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \dot{x} = y = y$ | $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} x$ $= \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} x$ | $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \dot{x} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ $y = \begin{bmatrix} 0 & 0 \end{bmatrix}$ |         |
| $\sigma(\cdot):1$ –                                                                 | ightarrow 2 gives                                                                                                   | $\sigma(\cdot):2 ightarrow 1$ gives                                                                                                                                           |         |
| $\mathfrak{C}_{-} = \operatorname{spa}$                                             | $\inf\{e_1, e_3\},$                                                                                                 | $\mathfrak{C}_{-} = \operatorname{span}\{e_2\},$                                                                                                                              |         |

 $c_{-} = \operatorname{span}\{e_{1}, e_{3}\},\$   $\ker O_{-} = \operatorname{span}\{e_{1}, e_{2}\},\$   $\ker O_{+}^{-} = \operatorname{span}\{e_{1}, e_{2}, e_{3}\},\$   $\ker O_{+}^{\mathsf{imp}} = \operatorname{span}\{e_{2}, e_{3}\},\$   $\Rightarrow \mathcal{M} = \{0\}$ 

 $\ker O_{+}^{-} = \operatorname{span}\{e_{1}, e_{2}\},$  $\ker O_{+}^{\mathsf{imp}} = \operatorname{span}\{e_{1}, e_{2}, e_{3}\}$  $\Rightarrow \quad \mathcal{M} = \operatorname{span}\{e_{2}\}$ 

 $\ker O_- = \operatorname{span}\{e_1, e_2\}$ 



### Overall summary

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

$$y = C_{\sigma}x + D_{\sigma}u$$
(swDAE)

#### Piecewise-smooth distributional solution framework

$$x\in\mathbb{D}^n_{\mathrm{pw}\mathcal{C}^\infty}$$
 ,  $\,u\in\mathbb{D}^m_{\mathrm{pw}\mathcal{C}^\infty}$  ,  $\,y\in\mathbb{D}^p_{\mathrm{pw}\mathcal{C}^\infty}$ 

- $\,\,$  > Existence and uniqueness of solutions?  $\,\,\checkmark\,$
- $\,$  > Jumps and impulses in solutions?  $\checkmark$
- $\,\,$  > Conditions for impulse free solutions?  $\,\,\checkmark\,$
- > Control theoretical questions
  - Stability  $\checkmark$  and stabilization ?
  - Observability  $\checkmark$  and observer design  $\checkmark$
  - Controllability  $\checkmark$  and controller design ?
  - Extension to nonlinear case ?