

faculty of science and engineering bernoulli institute for mathematics, computer science and artificial intelligence

Optimal Control of Switched DAEs

Stephan Trenn

Jan C. Willems Center for Systems and Control University of Groningen, Netherlands

Supported by NWO Vidi grant 639.032.733

14th Viennese Conference on Optimal Control and Dynamic Games 5 July 2018, Vienna, Austria

From LTIs to switched DAEs

Classical linear systems:

 $\dot{x} = Ax + Bu$

 $A\in\mathbb{R}^{n\times n}$, $B\in\mathbb{R}^{n\times m}$, $x(t)\in\mathbb{R}^n$, $u(t)\in\mathbb{R}^m$

Include algebraic constraints (e.g. Kirchhoff laws)

 $\mathbf{E}\dot{x} = Ax + Bu$

 $E \in \mathbb{R}^{n \times n}$ singular

Consider sudden structural changes (switches)

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

 $\sigma:\mathbb{R}\rightarrow\{1,2,...,N\}$ piecewise-constant switching signal

Controllable Switching Signal

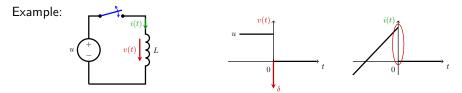
Challenges for switched DAEs

Inconsistent state values when switching

At a switching time $t_s \in \mathbb{R}$ the state value $x(t_s^-)$ may be inconsistent with algebraic constraints of mode $\sigma(t_s^+)$. \Rightarrow state jump necessary: $x(t_s^-) \rightarrow x(t_s^+)$

Dirac impulses in response to switches

In addition to jumps, switches may also induce Dirac impulses in the state.



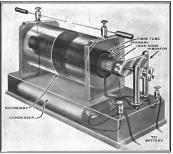
Controllable Switching Signal

Dirac impulse is "real"

Dirac impulse

Not just a mathematical artefact!

Induction coil



Drawing: Harry Winfield Secor, public domain

Photo: Ralf Schumacher, CC-BY-SA 3.0

Controllable Switching Signal

Different (optimal) control setups

$$u(t) \longrightarrow E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

 $\Rightarrow \ \ time-varying, \ linear$

$$\sigma(t) \longrightarrow E_{\sigma} \dot{x} = A_{\sigma} x + B_{\sigma} u$$

 $\Rightarrow \begin{array}{l} \mbox{optimal switching sequence} \\ + \mbox{ optimal switching times} \end{array}$

$$u(t) \longrightarrow E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

 $\Rightarrow \begin{array}{c} \text{combined continuous} \\ \text{and discrete optimization} \end{array}$

Available results for time-varying case

 $E(t)\dot{x} = A(t)x + B(t)u$

Treated in e.g. Kunkel & Mehrmann 1997, Kurina & März 2004, ...

BUT: Continuity assumption

Existing results restricted to (at least) continuous coefficient matrices $E(\cdot)$, $A(\cdot)$.

In particular:

- > no jumps considered
- > avoiding of Dirac impulses not addressed
- > role of switches for guaranteeing controllability not relevant

Illustrative Example

Minimize $\int_0^{t_f} (x_1^2+u^2)$ subject to

$$\begin{array}{lll} {\rm on} \ [0,1): & \dot{x}_1 = u & & \\ \dot{x}_2 = 0 & & {\rm on} \ [1,t_f): & \dot{x}_1 + \dot{x}_2 = 0 \\ & 0 = x_2 \end{array}$$

Trivial optimal control $u^* \equiv 0$ on $[1, t_f)$ with corresponding solution:

$$x_1(t) \stackrel{\dot{x}_1+0=0}{=} x_1(1^+) \stackrel{x_2=0}{=} x_1(1^+) + x_2(1^+) \stackrel{\frac{d}{dt}(x_1+x_2)|_{t=1}=0}{=} x_1(1^-) + x_2(1^-)$$

Two competing control objectives

1. Make x_1 small with minimal control effort on [0, 1)

2. Steer
$$x_1(1^-)$$
 close to $-x_2(1^-) = -x_2(0)$

Stephan Trenn (Jan C. Willems Center, U Groningen)

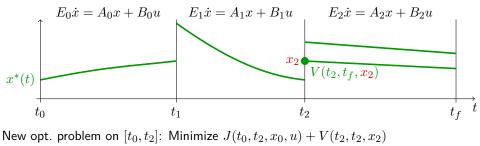
Controllable Switching Signal

Proposed optimization method

(OPT) Minimize
$$J(t_0,t_f,x_0,u):=\int_{t_0}^{t_f}(x^\top Qx+u^\top Ru)$$
 subject to

 $E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u, \quad x(t_0^-) = x_0 \in \mathbb{R}^n, \quad u \in \mathcal{U}$

Value function: $V(\tau_1, \tau_2, x_1) = \inf_{u \in \mathcal{U}} J(\tau_1, \tau_2, x_1, u)$



 \hookrightarrow Dynamic programming

Recursive solution approach

(OPT) Minimize $\int_0^{t_f} (x^\top Q x + u^\top R u)$ subject to

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u, \quad x(t_0^-) = x_0 \in \mathbb{R}^n, \quad u \in \mathcal{U}$$

with switching times $t_0, t_1, t_2, \ldots, t_N = t_f$.

Optimization "Algorithm"

```
\begin{array}{l} \textbf{Step } N : \\ \text{Solve (OPT) on } [t_{N-1},t_N] \text{ with variable initial value } x_{N-1} \\ \hookrightarrow \quad \text{cost function } V_{N-1}(x_{N-1}) := V(t_{N-1},t_N,x_{N-1}) \\ \hookrightarrow \quad \text{optimal } u \text{ on } [t_{N-1},t_N] \text{ parametrized by } x_{N-1} \\ \textbf{Step } k = N-1, N-2, \ldots, 1 : \\ \text{Solve (OPT) on } [t_{k-1},t_k] \text{ with additional terminal costs } V_k(x(t_k^-)) \text{ and variable initial value } x_{k-1} \\ \hookrightarrow \quad \text{cost function } V_{k-1}(x_{k-1}) \\ \hookrightarrow \quad \text{optimal } u \ [t_{k-1},t_k] \text{ parametrized by } x_{N-1} \end{array}
```


Open issues with recursive algorithm

Recursive algorithm summary: For any $x_{k-1} \in \mathbb{R}^n$ solve

$$\min_{u \in \mathcal{U}} \int_{t_{k-1}}^{t_k} (x^\top Q x + u^\top R u) + V_k(x(t_k^-)), \text{ subj. to } \sum_{x(t_{k-1}^-) = x_{k-1}}^{E_{k-1}\dot{x}} A_{k-1} u = x_{k-1} u$$

where $V_k(x_k) := \min_{u \in \mathcal{U}} \int_{t_k}^{t_f} x^\top Q x + u^\top R u, \quad x(t_k^-) = x_k$

Questions and challenges

- > Is it true that $V_k(x_k) = x_k^\top M_k x_k$ for some pos. semi-def. M_k ?
- > Can M_k be calculated efficiently and numerically?
- > How to take into account that x_k is restricted to some subspace?
- > Optimal control u^* in state-feedback form?
- > Avoiding Dirac-impulses?
- > More global result, e.g. in terms of adjoint system?

Controllable Switching Signal

Different optimization setups

$$u(t) \longrightarrow E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

 \Rightarrow time-varying, linear

$$\sigma(t) \longrightarrow E_{\sigma} \dot{x} = A_{\sigma} x + B_{\sigma} u$$

⇒ optimal switching sequence
 + optimal switching times

 $\Rightarrow \begin{array}{c} \text{combined continuous} \\ \text{and discrete optimization} \end{array}$

Optimal switching

$$E_{\sigma}\dot{x} = A_{\sigma}x$$

Possible setup

$$\boxed{E\dot{x} = Ax + Bu} + \boxed{u = F_{\sigma}x} = \boxed{E\dot{x} = (A + BF_{\sigma})x}$$

 $\label{eq:linear} \stackrel{}{\hookrightarrow} \mbox{In general: } \mbox{Mixed integer programming problem} \rightarrow \mbox{NP-hard} \\ \stackrel{}{\hookrightarrow} \mbox{Relaxations, Heuristics, Branch & Bound methods, } \ldots$

Fix switching sequence: Optimize switching times only \hookrightarrow Available results for ODEs: Egerstedt et al. 2006, Xu et al. 2004, ...

DAE-specific

Costs for induced jumps / Dirac impulses

Stephan Trenn (Jan C. Willems Center, U Groningen)

Controllable Switching Signal

Different optimization setups

$$u(t) \longrightarrow E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

 $\Rightarrow \ \ \text{time-varying, linear}$

$$\sigma(t) \longrightarrow E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

 $\Rightarrow \begin{array}{l} \mbox{optimal switching sequence} \\ + \mbox{ optimal switching times} \end{array}$

 $\Rightarrow \begin{array}{l} \mbox{combined continuous} \\ \mbox{and discrete optimization} \end{array}$

Most general problem

$$\min_{u,\sigma} J(x, u, \sigma)$$
 subject to $E_{\sigma} \dot{x} = A_{\sigma} x + B_{\sigma} u$

Suprisingly ...

Maximum principle available for ODE case (Sussmann 1999)

- \hookrightarrow DAE-generalization seems possible (jumps already included in ODE case)
- \hookrightarrow However: role of induced Dirac impulses unclear
- $\hookrightarrow \mathsf{Implementability?}$

Summary

Optimal Control for switched DAEs

- > Given switching signal (\rightarrow time-varying case)
 - Seems most tractable (via dynamic programming)
 - Some DAE-specifics still unclear (in particular role of Diracs)
 - Role of state and input constraints?
- > Switching signal is also an input
 - Costs for induced jumps and Dirac impulses
 - NP-hard
 - DAE-specific heuristics