Optimal Control of Switched DAEs

Stephan Trenn
Jan C. Willems Center for Systems and Control
University of Groningen, Netherlands
Supported by NWO Vidi grant 639.032.733
14th Viennese Conference on Optimal Control and Dynamic Games
5 July 2018, Vienna, Austria

From LTIs to switched DAEs

Classical linear systems:

$$
\dot{x}=A x+B u
$$

$A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, x(t) \in \mathbb{R}^{n}, u(t) \in \mathbb{R}^{m}$
Include algebraic constraints (e.g. Kirchhoff laws)

$$
E \dot{x}=A x+B u
$$

$E \in \mathbb{R}^{n \times n}$ singular
Consider sudden structural changes (switches)

$$
E_{\sigma} \dot{x}=A_{\sigma} x+B_{\sigma} u
$$

$\sigma: \mathbb{R} \rightarrow\{1,2, \ldots, N\}$ piecewise-constant switching signal

Challenges for switched DAEs

Inconsistent state values when switching

At a switching time $t_{s} \in \mathbb{R}$ the state value $x\left(t_{s}^{-}\right)$may be inconsistent with algebraic constraints of mode $\sigma\left(t_{s}^{+}\right)$.
\Rightarrow state jump necessary: $x\left(t_{s}^{-}\right) \rightarrow x\left(t_{s}^{+}\right)$

Dirac impulses in response to switches

In addition to jumps, switches may also induce Dirac impulses in the state.
Example:

Dirac impulse is "real"

Dirac impulse

Not just a mathematical artefact!

Induction coil

Drawing: Harry Winfield Secor, public domain

Spark plug

Different (optimal) control setups

$\Rightarrow \begin{aligned} & \text { optimal switching sequence } \\ & + \text { optimal switching times }\end{aligned}$
$\Rightarrow \begin{aligned} & \text { combined continuous } \\ & \text { and discrete optimization }\end{aligned}$

Available results for time-varying case

$$
E(t) \dot{x}=A(t) x+B(t) u
$$

Treated in e.g. Kunkel \& Mehrmann 1997, Kurina \& März 2004, ...

BUT: Continuity assumption

Existing results restricted to (at least) continuous coefficient matrices $E(\cdot), A(\cdot)$.
In particular:
, no jumps considered
, avoiding of Dirac impulses not addressed
, role of switches for guaranteeing controllability not relevant

Illustrative Example

Minimize $\int_{0}^{t_{f}}\left(x_{1}^{2}+u^{2}\right)$ subject to

$$
\begin{array}{rlrlr}
\text { on }[0,1): & \dot{x}_{1}=u & & & \dot{x}_{1}+\dot{x}_{2}
\end{array}=0
$$

Trivial optimal control $u^{*} \equiv 0$ on $\left[1, t_{f}\right)$ with corresponding solution:

$$
x_{1}(t) \stackrel{\dot{x}_{1}+0=0}{=} x_{1}\left(1^{+}\right) \stackrel{x_{2}=0}{=} x_{1}\left(1^{+}\right)+x_{2}\left(1^{+}\right) \stackrel{\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(x_{1}+x_{2}\right)\right|_{t=1}=0}{=} x_{1}\left(1^{-}\right)+x_{2}\left(1^{-}\right)
$$

Two competing control objectives

1. Make x_{1} small with minimal control effort on $[0,1)$
2. Steer $x_{1}\left(1^{-}\right)$close to $-x_{2}\left(1^{-}\right)=-x_{2}(0)$

Proposed optimization method

(OPT) Minimize $J\left(t_{0}, t_{f}, x_{0}, u\right):=\int_{t_{0}}^{t_{f}}\left(x^{\top} Q x+u^{\top} R u\right)$ subject to

$$
E_{\sigma} \dot{x}=A_{\sigma} x+B_{\sigma} u, \quad x\left(t_{0}^{-}\right)=x_{0} \in \mathbb{R}^{n}, \quad u \in \mathcal{U}
$$

Value function: $\quad V\left(\tau_{1}, \tau_{2}, x_{1}\right)=\inf _{u \in \mathcal{U}} J\left(\tau_{1}, \tau_{2}, x_{1}, u\right)$

New opt. problem on $\left[t_{0}, t_{2}\right]$: Minimize $J\left(t_{0}, t_{2}, x_{0}, u\right)+V\left(t_{2}, t_{2}, x_{2}\right)$
\hookrightarrow Dynamic programming

Recursive solution approach

(OPT) Minimize $\int_{0}^{t_{f}}\left(x^{\top} Q x+u^{\top} R u\right)$ subject to

$$
E_{\sigma} \dot{x}=A_{\sigma} x+B_{\sigma} u, \quad x\left(t_{0}^{-}\right)=x_{0} \in \mathbb{R}^{n}, \quad u \in \mathcal{U}
$$

with switching times $t_{0}, t_{1}, t_{2}, \ldots, t_{N}=t_{f}$.

Optimization "Algorithm"

Step N :

Solve (OPT) on $\left[t_{N-1}, t_{N}\right]$ with variable initial value x_{N-1}
\hookrightarrow cost function $V_{N-1}\left(x_{N-1}\right):=V\left(t_{N-1}, t_{N}, x_{N-1}\right)$
\hookrightarrow optimal u on $\left[t_{N-1}, t_{N}\right]$ parametrized by x_{N-1}
Step $k=N-1, N-2, \ldots, 1$:
Solve (OPT) on $\left[t_{k-1}, t_{k}\right]$ with additional terminal costs $V_{k}\left(x\left(t_{k}^{-}\right)\right)$and variable initial value x_{k-1}
\hookrightarrow cost function $V_{k-1}\left(x_{k-1}\right)$
\hookrightarrow optimal $u\left[t_{k-1}, t_{k}\right]$ parametrized by x_{N-1}

Open issues with recursive algorithm

Recursive algorithm summary: For any $x_{k-1} \in \mathbb{R}^{n}$ solve

$$
\min _{u \in \mathcal{U}} \int_{t_{k-1}}^{t_{k}}\left(x^{\top} Q x+u^{\top} R u\right)+V_{k}\left(x\left(t_{k}^{-}\right)\right), \text {subj. to } \begin{aligned}
E_{k-1} \dot{x} & =A_{k-1} x+B_{k-1} u \\
x\left(t_{k-1}^{-}\right) & =x_{k-1}
\end{aligned}
$$

where $V_{k}\left(x_{k}\right):=\min _{u \in \mathcal{U}} \int_{t_{k}}^{t_{f}} x^{\top} Q x+u^{\top} R u, \quad x\left(t_{k}^{-}\right)=x_{k}$

Questions and challenges

, Is it true that $V_{k}\left(x_{k}\right)=x_{k}^{\top} M_{k} x_{k}$ for some pos. semi-def. M_{k} ?
, Can M_{k} be calculated efficiently and numerically?
, How to take into account that x_{k} is restricted to some subspace?
, Optimal control u^{*} in state-feedback form?
, Avoiding Dirac-impulses?
, More global result, e.g. in terms of adjoint system?

Different optimization setups

$\Rightarrow \begin{aligned} & \text { optimal switching sequence } \\ & + \text { optimal switching times }\end{aligned}$
$\Rightarrow \quad \begin{aligned} & \text { combined continuous } \\ & \text { and discrete optimization }\end{aligned}$

Optimal switching

$$
E_{\sigma} \dot{x}=A_{\sigma} x
$$

Possible setup

$$
E \dot{x}=A x+B u+u=F_{\sigma} x=E \dot{x}=\left(A+B F_{\sigma}\right) x
$$

\hookrightarrow In general: Mixed integer programming problem \rightarrow NP-hard \hookrightarrow Relaxations, Heuristics, Branch \& Bound methods, ...
Fix switching sequence: Optimize switching times only
\hookrightarrow Available results for ODEs: Egerstedt et al. 2006, Xu et al. 2004, ...

DAE-specific

Costs for induced jumps / Dirac impulses

Different optimization setups

$\Rightarrow \begin{aligned} & \text { optimal switching sequence } \\ & + \text { optimal switching times }\end{aligned}$
combined continuous and discrete optimization

Most general problem

$\min _{u, \sigma} J(x, u, \sigma)$ subject to $E_{\sigma} \dot{x}=A_{\sigma} x+B_{\sigma} u$

Suprisingly

Maximum principle available for ODE case (Sussmann 1999)
\hookrightarrow DAE-generalization seems possible (jumps already included in ODE case)
\hookrightarrow However: role of induced Dirac impulses unclear
\hookrightarrow Implementability?

Summary

Optimal Control for switched DAEs

, Given switching signal (\rightarrow time-varying case)

- Seems most tractable (via dynamic programming)
- Some DAE-specifics still unclear (in particular role of Diracs)
- Role of state and input constraints?
, Switching signal is also an input
- Costs for induced jumps and Dirac impulses
- NP-hard
- DAE-specific heuristics

