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Piecewise smooth systems
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Rn Polyhedral partition

Rn =
⋃

s∈
Xs,  = {1,2, . . . , N}

intX ∩ intXj = ∅ ∀ 6= j

Piecewise-smooth dynamics

̇ = ƒs()  ∈ Xs, s ∈ 

Piecewise-affine (PWA) systems:

ƒs() = As + bs
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Motivation and problem formulation

Occurrence of PWA systems:
› Linear systems coupled with saturation and friction
› Electrical circuits with diodes and transistors
› Feedback control with gain scheduling
› Linearization of nonlinear systems around different operating points

Goal: Stability proof

Construct global Lyapunov function V for

̇ = ƒs(),  ∈ Xs, s ∈  (PWS)

with the help of local Lyapunov functions Vs on Xs
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Behavior on boundaries

̇ = ƒs(),  ∈ Xs, s ∈  (PWS)

Xs are closed convex polyhedra (i.e. finite intersection of half spaces)

Question
What to do for  ∈ X ∩ Xj

Answer: We don’t care
More formally:

̇ ∈
�

ƒs()
�

� s ∈ 
	

where
 := {s ∈  | ∈ Xs}
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Caratheodory solutions

̇ = ƒs(),  ∈ Xs, s ∈  (PWS)

Definition
 : [0, ω)→ Rn is called Caratheodory solution of (PWS):⇐⇒
1.  is absolutely continuous (hence differentiable a.e.)
2. ̇(t) ∈ {ƒs() | s ∈ } for a.a. t ∈ [0, ω)

1

2

X1X2

X3 X4

ƒs() = As

A1 = A3 =
�

1 −5
0.2 1

�

A2 = A4 =
�

1 −0.2
5 1

�
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Well-posedness issues
Non-existence

Example

̇ =

¨

−1,  ≥ 0
1,  ≤ 0

0

No solution with (0) = 0.

Non-uniqueness

Example

̇ =

¨

1,  ≥ 0
−1,  ≤ 0

0

Two solutions with (0) = 0

In the context of stability analysis

Non-existence: Not OK Non-uniqueness: OK
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Accumulation of switching times (Zeno)
Right-accumulation

̇ =















( −1, 1 )> 1 ≥ 0, 2 ≥ 0
( −1, −1 )> 1 ≤ 0, 2 ≥ 0
( 1, −1 )> 1 ≤ 0, 2 ≤ 0
( 1/2, 1 )> 1 ≥ 0, 2 ≤ 0

1

2

Left-accumulation

̇ =















( 1, −1 )> 1 ≥ 0, 2 ≥ 0
( 1, 1 )> 1 ≤ 0, 2 ≥ 0
( −1, 1 )> 1 ≤ 0, 2 ≤ 0
( −1/2, −1 )> 1 ≥ 0, 2 ≤ 0

1

2
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Filippov solutions

̇ = ƒs(),  ∈ Xs, s ∈  (PWS)

Definition
 : [0, ω)→ Rn is called Filippov solution of (PWS):⇐⇒
1.  is absolutely continuous (hence differentiable a.e.)
2. ̇(t) ∈ conv{ƒs() | s ∈ } for a.a. t ∈ [0, ω)

Theorem (cf. Filippov 1988)

∀0 ∈ Rn exists Filippov solution  : [0, ω)→ Rn of (PWS) with (0) = 0.
Furthermore, if ƒs() = As + bs and  finite then ω =∞ .

Problem: “Unnecessary” sliding

0
has (t) ≡ 0 as Filippov solution.
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From local to global LF-function

General idea
Given local Lyapunov function Vs : Rn → R, i.e.
(L1) Vs ∈ C and Vs

�

�

Xs
∈ C1.

(L2) Vs is positive definite on Xs
(L3) Vs is radially unbounded in the following sense:

∀ ∈ Vs(Xs) ⊆ R : V−1s ([0, ]) ∩ Xs is compact

(L4) Vs is decreasing along solutions within Xs, i.e.

∇Vs()ƒs() < 0 ∀ ∈ Xs \ {0},

let global Lyapunov function V : Rn → R be given by

V() = Vs() for  ∈ Xs, s ∈ 

ƒs() = As + bs and Vs() = >Ps + 2q>s  + rs → LMIs
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Continuous global Lyapunov function

Theorem (Cf. Johansson 2003)

Let Vs : Rn → R be local LF on Xs such that

V() = Vs() for  ∈ Xs, s ∈ 

is continuous.
Then (t)→ 0 for all Caratheodory solutions  : [0,∞)→ Rn.

Extension to Filippov solution

Johansson extended the above result for PWA systems to Filippov
solutions by additionally requiring

∇Vs()(As + bs) < 0, ∀ ∈ Xs ∩ Xs
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Example to motivate discontinuous LF

̇ = As + bs on Xs, (PWA)

with

A0 = −, A1 = A2 = A3 = A4 = 0,

b0 = 0, b1 =
�

1
−0.1

�

, b2 =
�

0
−1
�

,

b3 =
�−1
0

�

, b4 = −b2.

PWQ-LF: Vs() = >Ps + 2q>s  + rs

1

2

X0

X1
X2

X3
X4

Lemma
The above PWA system does not permit a continuous PWQ-LF.
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Crossing and splitting boundaries

̇ = As + bs on Xs, (PWA)

Definition (For (n − 1)-dimensional boundaries)

Xj := X ∩ Xj is called (, j)-crossing boundary :⇐⇒ there are solutions
of (PWA) going from region  to region j.
Xj := X ∩ Xj is called (, j)-splitting boundary :⇐⇒ there is no solutions
reaching points in Xj

Lemma (Iervolino, T., Vasca; CDC 2017)
Assume there exists local LF Vs : Rn → R, such that
› V() ≥ Vj() for all  in (, j)-crossing boundaries
› V() = Vj() for all  in non-crossing and non-splitting boundaries
Then (t)→ 0 for all Caratheodory solutions  : [0,∞)→ Rn
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Forward, backward, sliding modes
For  ∈ Rn let
›  := {s ∈  | ∈ Xs} the set of current modes
› + :=

⋃

ξ∈FS+ ()
⋂

ϵ>0
⋃

τ∈(0,ϵ) 
ξ(τ) the set of forward modes

› − :=
⋃

ξ∈FS− ()
⋂

ϵ>0
⋃

τ∈(0,ϵ) 
ξ(−τ) the set of backward modes

› slide :=

¨

+ , CS() = ∅
∅, CS() 6= ∅

the set of sliding modes

0 X1X2
0 = {1,2}, 0+ = {1}, 0− = {2}, 0slide = ∅

0 X1X2
0 = 0+ = {1,2}, 0− = 

0
slide = ∅

0 X1X2
0 = 0+ = 

0
− = 

0
slide = {1,2}
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⋃

ξ∈FS− ()
⋂

ϵ>0
⋃

τ∈(0,ϵ) 
ξ(−τ) the set of backward modes

› slide :=

¨

+ , CS() = ∅
∅, CS() 6= ∅

the set of sliding modes

1

2

X1X2

X3 X4

0 = 0+ = 
0
− = 

0
slide = {1,2,3,4}
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Forward, backward, sliding modes
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+ , CS() = ∅
∅, CS() 6= ∅

the set of sliding modes

1

2

X1X2

X3 X4

0 = 0+ = {1,2,3,4}, 0− = 
0
slide = ∅
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Proposed generalized stability result

̇ = ƒs(),  ∈ Xs, s ∈  (PWS)

Conjecture

Let Vs : Rn → R be local Lyapunov functions such that for all  ∈ Rn

› Jump condition: V() ≥ Vj() ∀(, j) ∈ − × 

+

› Sliding condition: slide 6= ∅ ∧  6= 0 =⇒ ∃ ∈ slide:

∇V()(ƒj()) < 0 ∀j ∈ slide

Then (PWS) (with Filippov solutions) is globally asymptotically stable.

Proof idea: Consider global Lyapunov function V() =mxs∈+ Vs()
Problem: Is t 7→ V((t)) differentiable almost everywhere?

Stephan Trenn (Jan C. Willems Center, U Groningen) Discontinuous Lyapunov Functions (15 / 16)



Problem formulation Solution concepts for PWS systems Lyapunov function construction Outlook

Future work
TODO:
› Pass from point-wise jump/sliding-cond. to boundary-wise cond.
› Formulate sufficient LMIs to ensure validity of jump/sliding conditions

Long term goal: Automated stability proof for nonlinear systems
1. Chose polyhedral partition of Rn

2. Linearize nonlinear dynamics around one interior point per region
→ PWA system with quantifiable approximation accuracy

3. Automatically set up LMIs
4. Try to find solution of LMIs with standard solvers
5. Solution found → global Lyapunov function for PWA
6. No solution found → refine partition and try again

Hope: LF for (PWA) also LF for original nonlinear system
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