

 faculty of science and engineering johann bernoulli institute for mathematics and computer science

Discontinuous Lyapunov Functions for Discontinuous Nonlinear Systems

Stephan Trenn

Jan C. Willems Center for Systems and Control University of Groningen, Netherlands

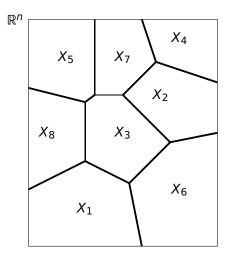
Ongoing joint work with **Raffaele lervolino** (University of Naples Federico II, Italy) and **Francesco Vasca** (University of Sannio, Benevento, Italy)

Meeting of GAMM-FA "Dynamik und Regelungstheorie", Berlin, Germany, 19-04-2018

Lyapunov function construction

Outlook

Piecewise smooth systems



Polyhedral partition

$$\mathbb{R}^n = \bigcup_{s \in \Sigma} X_s, \quad \Sigma = \{1, 2, \dots, N\}$$

$$\operatorname{int} X_i \cap \operatorname{int} X_j = \emptyset \quad \forall i \neq j$$

Piecewise-smooth dynamics

 $\dot{x} = f_s(x) \quad x \in X_s, \ s \in \Sigma$

Piecewise-affine (PWA) systems:

 $f_s(x) = A_s x + b_s$

Motivation and problem formulation

Occurrence of PWA systems:

- > Linear systems coupled with saturation and friction
- > Electrical circuits with diodes and transistors
- > Feedback control with gain scheduling
- > Linearization of nonlinear systems around different operating points

Goal: Stability proof

Construct global Lyapunov function V for

$$\dot{x} = f_s(x), \quad x \in X_s, \ s \in \Sigma$$
 (PWS)

with the help of local Lyapunov functions V_s on X_s

Contents

Problem formulation

Solution concepts for PWS systems

Lyapunov function construction

Outlook

Behavior on boundaries

$$\dot{x} = f_s(x), \quad x \in X_s, \ s \in \Sigma$$
 (PWS)

 X_s are closed convex polyhedra (i.e. finite intersection of half spaces)

Question

What to do for $x \in X_i \cap X_j$

Answer: We don't care

More formally:

 $\dot{x} \in \left\{ f_s(x) \mid s \in \Sigma^{\mathsf{X}} \right\}$

where

 $\Sigma^{\chi} := \{ s \in \Sigma \mid \chi \in X_s \}$

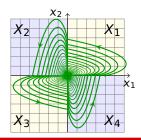
Caratheodory solutions

$$\dot{x} = f_s(x), \quad x \in X_s, \ s \in \Sigma$$
 (PWS)

Definition

 $x : [0, \omega) \rightarrow \mathbb{R}^n$ is called Caratheodory solution of (PWS): \iff

- 1. *x* is absolutely continuous (hence differentiable a.e.)
- 2. $\dot{x}(t) \in \{f_s(x) \mid s \in \Sigma^x\}$ for a.a. $t \in [0, \omega)$



$$f_{s}(x) = A_{s}x$$

$$A_{1} = A_{3} = \begin{bmatrix} 1 & -5\\ 0.2 & 1 \end{bmatrix}$$

$$A_{2} = A_{4} = \begin{bmatrix} 1 & -0.2\\ 5 & 1 \end{bmatrix}$$

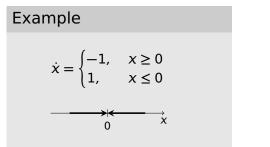
Stephan Trenn (Jan C. Willems Center, U Groningen)

Lyapunov function construction

Outlook

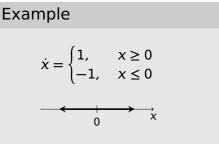
Well-posedness issues

Non-existence



No solution with x(0) = 0.

Non-uniqueness



Two solutions with x(0) = 0

In the context of stability analysis

Non-existence: Not OK

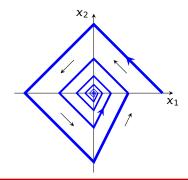
Non-uniqueness: OK

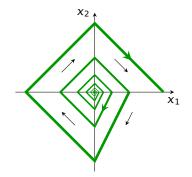
Accumulation of switching times (Zeno)

Right-accumulation

$$\dot{X} = \begin{cases} (-1, 1)^{\mathsf{T}} & x_1 \ge 0, x_2 \ge 0\\ (-1, -1)^{\mathsf{T}} & x_1 \le 0, x_2 \ge 0\\ (1, -1)^{\mathsf{T}} & x_1 \le 0, x_2 \le 0\\ (1/2, 1)^{\mathsf{T}} & x_1 \ge 0, x_2 \le 0 \end{cases}$$

$$\dot{X} = \begin{cases} (1, -1)^{\mathsf{T}} & x_1 \ge 0, \ x_2 \ge 0\\ (1, 1)^{\mathsf{T}} & x_1 \le 0, \ x_2 \ge 0\\ (-1, 1)^{\mathsf{T}} & x_1 \le 0, \ x_2 \le 0\\ (-1/2, -1)^{\mathsf{T}} & x_1 \ge 0, \ x_2 \le 0 \end{cases}$$





Lyapunov function construction Ou

Filippov solutions

$$\dot{x} = f_s(x), \quad x \in X_s, \ s \in \Sigma$$
 (PWS)

Definition

- $x : [0, \omega) \rightarrow \mathbb{R}^n$ is called Filippov solution of (PWS): \iff
- 1. *x* is absolutely continuous (hence differentiable a.e.)
- 2. $\dot{x}(t) \in \text{conv} \{f_s(x) \mid s \in \Sigma^x\}$ for a.a. $t \in [0, \omega)$

Theorem (cf. Filippov 1988)

 $\forall x_0 \in \mathbb{R}^n$ exists Filippov solution $x : [0, \omega) \to \mathbb{R}^n$ of (PWS) with $x(0) = x_0$. Furthermore, if $f_s(x) = A_s x + b_s$ and Σ finite then $\omega = \infty$.

Stephan Trenn (Jan C. Willems Center, U Groningen)

Contents

Problem formulation

Solution concepts for PWS systems

Lyapunov function construction

Outlook

From local to global LF-function

General idea

Given local Lyapunov function $V_s : \mathbb{R}^n \to \mathbb{R}$, i.e. (L1) $V_s \in \mathcal{C}$ and $V_s |_{X_s} \in \mathcal{C}^1$.

- (L2) V_s is positive definite on X_s
- (L3) V_s is radially unbounded in the following sense: $\forall \overline{\nu} \in V_s(X_s) \subseteq \mathbb{R} : V_s^{-1}([0, \overline{\nu}]) \cap X_s$ is compact
- (L4) V_s is decreasing along solutions within X_s , i.e.

 $\nabla V_s(x)f_s(x) < 0 \quad \forall x \in X_s \setminus \{0\},$

let global Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}$ be given by $V(x) = V_s(x)$ for $x \in X_s, s \in \Sigma$

$$f_s(x) = A_s x + b_s$$
 and $V_s(x) = x^\top P_s x + 2q_s^\top x + r_s \rightarrow \text{LMIs}$

Continuous global Lyapunov function

Theorem (Cf. Johansson 2003)

Let $V_s : \mathbb{R}^n \to \mathbb{R}$ be local LF on X_s such that

 $V(x) = V_s(x)$ for $x \in X_s$, $s \in \Sigma$

is continuous. Then $x(t) \rightarrow 0$ for all Caratheodory solutions $x : [0, \infty) \rightarrow \mathbb{R}^n$.

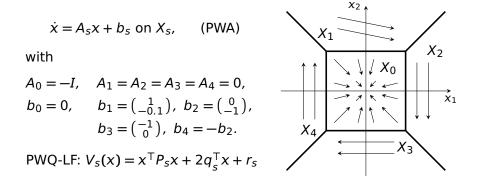
Extension to Filippov solution

Johansson extended the above result for PWA systems to Filippov solutions by additionally requiring

$$\nabla V_s(x)(A_{\overline{s}}x+b_{\overline{s}})<0, \ \forall x\in X_s\cap X_{\overline{s}}$$

Stephan Trenn (Jan C. Willems Center, U Groningen)

Example to motivate discontinuous LF



Lemma

The above PWA system does not permit a continuous PWQ-LF.

Outlool

Crossing and splitting boundaries

$$\dot{x} = A_s x + b_s \text{ on } X_s,$$
 (PWA)

Definition (For (n-1)-dimensional boundaries)

 $X_{ij} := X_i \cap X_j$ is called (i, j)-crossing boundary : \iff there are solutions of (PWA) going from region *i* to region *j*. $X_{ij} := X_i \cap X_j$ is called (i, j)-splitting boundary : \iff there is no solutions reaching points in X_{ij}

Lemma (lervolino, T., Vasca; CDC 2017)

Assume there exists local LF $V_s : \mathbb{R}^n \to \mathbb{R}$, such that $V_i(x) \ge V_i(x)$ for all x in (i, j)-crossing boundaries

> $V_i(x) = V_j(x)$ for all x in non-crossing and non-splitting boundaries Then $x(t) \rightarrow 0$ for all Caratheodory solutions $x : [0, \infty) \rightarrow \mathbb{R}^n$

Forward, backward, sliding modes

For $x \in \mathbb{R}^n$ let

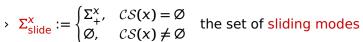
- → $\Sigma^{\chi} := \{s \in \Sigma \mid x \in X_s\}$ the set of current modes
- $> \Sigma_{+}^{\mathsf{X}} := \bigcup_{\xi \in \mathcal{FS}_{+}(\mathsf{X})} \bigcap_{\varepsilon > 0} \bigcup_{\tau \in (0,\varepsilon)} \Sigma^{\xi(\tau)}$ the set of forward modes
- $\Sigma_{-}^{\mathsf{X}} := \bigcup_{\xi \in \mathcal{FS}_{-}(\mathsf{X})} \bigcap_{\varepsilon > 0} \bigcup_{\tau \in (0,\varepsilon)} \Sigma^{\xi(-\tau)} \quad \text{the set of backward modes}$
- $\succ \Sigma_{\text{slide}}^{x} := \begin{cases} \Sigma_{+}^{x}, & \mathcal{CS}(x) = \emptyset \\ \emptyset, & \mathcal{CS}(x) \neq \emptyset \end{cases} \text{ the set of sliding modes} \end{cases}$

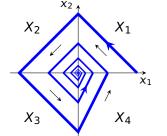
$$\begin{array}{c} & \xrightarrow{} & \Sigma^{0} = \{1, 2\}, \ \Sigma^{0}_{+} = \{1\}, \ \Sigma^{0}_{-} = \{2\}, \ \Sigma^{0}_{\text{slide}} = \emptyset \\ \hline & \xrightarrow{} & X_{2 \ 0 \ X_{1}} \xrightarrow{} & \Sigma^{0} = \Sigma^{0}_{+} = \{1, 2\}, \ \Sigma^{0}_{-} = \Sigma^{0}_{\text{slide}} = \emptyset \\ \hline & \xrightarrow{} & X_{2 \ 0 \ X_{1}} \xrightarrow{} & \Sigma^{0} = \Sigma^{0}_{+} = \Sigma^{0}_{-} = \Sigma^{0}_{\text{slide}} = \{1, 2\} \end{array}$$

Forward, backward, sliding modes

For $x \in \mathbb{R}^n$ let

- $\Sigma^{\mathbf{X}} := \{ s \in \Sigma \mid x \in X_s \}$ the set of current modes
- $> \Sigma_{+}^{\mathsf{X}} := \bigcup_{\xi \in \mathcal{FS}_{+}(x)} \bigcap_{\varepsilon > 0} \bigcup_{\tau \in (0,\varepsilon)} \Sigma^{\xi(\tau)}$ the set of forward modes
- $\Sigma_{-}^{\chi} := \bigcup_{\xi \in \mathcal{FS}_{-}(\chi)} \bigcap_{\varepsilon > 0} \bigcup_{\tau \in (0,\varepsilon)} \Sigma^{\xi(-\tau)} \text{ the set of backward modes}$





$$\Sigma^0 = \Sigma^0_+ = \Sigma^0_- = \Sigma^0_{slide} = \{1, 2, 3, 4\}$$

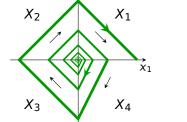
Forward, backward, sliding modes

For $x \in \mathbb{R}^n$ let

X2

- $\Sigma^{\chi} := \{ s \in \Sigma \mid x \in X_s \} \text{ the set of current modes}$
- $> \Sigma_{+}^{\mathsf{X}} := \bigcup_{\xi \in \mathcal{FS}_{+}(x)} \bigcap_{\varepsilon > 0} \bigcup_{\tau \in (0,\varepsilon)} \Sigma^{\xi(\tau)}$ the set of forward modes
- $\succ \Sigma_{-}^{\mathsf{X}} := \bigcup_{\xi \in \mathcal{FS}_{-}(x)} \bigcap_{\varepsilon \geq 0} \bigcup_{\tau \in (0,\varepsilon)} \Sigma^{\xi(-\tau)} \quad \text{the set of backward modes}$

$$\succ \Sigma_{\text{slide}}^{\chi} := \begin{cases} \Sigma_{+}^{\chi}, & \mathcal{CS}(\chi) = \emptyset \\ \emptyset, & \mathcal{CS}(\chi) \neq \emptyset \end{cases} \text{ th}$$



$$\Sigma^0 = \Sigma^0_+ = \{1, 2, 3, 4\}, \ \Sigma^0_- = \Sigma^0_{slide} = \emptyset$$

Proposed generalized stability result

$$\dot{x} = f_s(x), \quad x \in X_s, \ s \in \Sigma$$
 (PWS)

Conjecture

Let $V_s : \mathbb{R}^n \to \mathbb{R}$ be local Lyapunov functions such that for all $x \in \mathbb{R}^n$

> Jump condition: $V_i(x) \ge V_j(x) \quad \forall (i, j) \in \Sigma^x_- \times \Sigma^x_+$

> Sliding condition: $\Sigma_{\text{slide}}^{x} \neq \emptyset \land x \neq 0 \implies \exists i_{x} \in \Sigma_{\text{slide}}^{x}$:

 $\nabla V_{i_{x}}(x)(f_{j}(x)) < 0 \quad \forall j \in \Sigma_{\text{slide}}^{x}$

Then (PWS) (with Filippov solutions) is globally asymptotically stable.

Proof idea: Consider global Lyapunov function $V(x) = \max_{s \in \Sigma_+^x} V_s(x)$ Problem: Is $t \mapsto V(x(t))$ differentiable almost everywhere?

Future work

TODO:

- > Pass from point-wise jump/sliding-cond. to boundary-wise cond.
- > Formulate sufficient LMIs to ensure validity of jump/sliding conditions

Long term goal: Automated stability proof for nonlinear systems

- 1. Chose polyhedral partition of \mathbb{R}^n
- 2. Linearize nonlinear dynamics around one interior point per region \rightarrow PWA system with quantifiable approximation accuracy
- 3. Automatically set up LMIs
- 4. Try to find solution of LMIs with standard solvers
- 5. Solution found \rightarrow global Lyapunov function for PWA
- 6. No solution found \rightarrow refine partition and try again

Hope: LF for (PWA) also LF for original nonlinear system