Switch observability for a class of inhomogeneous switched DAEs

Stephan Trenn

Jan C. Willems Center for Systems and Control
University of Groningen, Netherlands
Joint work with Ferdinand Küsters, Fraunhofer ITWM, Kaiserslautern, Germany and Deepak Patil, Indian Institute of Technology Delhi, India

[^0]Conference on Decision and Control (CDC 2017), Melbourne, Australia, 2017/12/13

The observability problem

Observability questions

> Is there a unique x_{0} for any given σ, u, y ? \rightarrow observability
> Is there a unique $\left(x_{0}, \sigma\right)$ for any given u and y ?
$\rightarrow(x, \sigma)$-observability
> Is there a unique σ for any given u, y and unknown x_{0} ?
$\rightarrow \sigma$-observability

(χ, σ)-observability vs. σ-observability

First (surprising?) result for linear systems

$$
(x, \sigma) \text {-observability } \quad \Longleftrightarrow \sigma \text {-observability }
$$

\Longrightarrow is clear.
Main argument for \Longleftarrow :
Choose initial values $x_{0}^{1} \neq x_{0}^{2}$ with the same input-output behavior
$\rightarrow x_{0}:=x_{0}^{1}-x_{0}^{2} \neq 0$ gives $y \equiv 0$
$\rightarrow y \equiv 0$ also results from $x_{0}=0$ and any σ

Corollary for linear systems

$$
\sigma \text {-observability } \quad \Longrightarrow \quad \text { each individual mode observable }
$$

Weaker observability notion

$$
\begin{gathered}
\dot{x}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] x \\
y=C_{\sigma} x \\
\quad \text { with } \\
C_{1}=[1,0] \\
C_{2}=[0,1]
\end{gathered} \rightarrow \text { not observable } \quad \begin{array}{ccc}
\\
1
\end{array}
$$

Switch observability (σ_{1}-observability)

Recover x and σ from u and y, if at least one switch occurs

The simplest case

$$
\begin{aligned}
& \dot{x}=A_{\sigma} x \\
& y=C_{\sigma} x
\end{aligned}
$$

$$
\mathcal{O}_{k}:=\left[\begin{array}{c}
C_{k} \\
C_{k} A_{k} \\
C_{k} A_{k}^{2} \\
\vdots
\end{array}\right]
$$

Theorem (cf. Küsters \& Trenn, Automatica 2018)

$$
\begin{aligned}
& \sigma \text {-observability } \Longleftrightarrow \forall i \neq j: \operatorname{rank}\left[\mathcal{O}_{i} \mathcal{O}_{j}\right]=2 n \\
& \sigma_{1} \text {-observability } \Longleftrightarrow \forall i \neq j, p \neq q,(i, j) \neq(p, q): \operatorname{rank}\left[\begin{array}{ll}
\mathcal{O}_{i} & \mathcal{O}_{p} \\
\mathcal{O}_{j} & \mathcal{O}_{q}
\end{array}\right]=2 n \\
& t_{\text {S-observability }} \Longleftrightarrow \forall i \neq j: \operatorname{rank}\left[\mathcal{O}_{i}-\mathcal{O}_{j}\right]=n
\end{aligned}
$$

Adding inputs

$$
\begin{aligned}
& \dot{x}=A_{\sigma} x+B_{\sigma} u \\
& y=C_{\sigma} x+D_{\sigma} u
\end{aligned}
$$

Input-depending observability

$\Sigma\left(A_{\sigma}, C_{\sigma}\right) \sigma$-observable $\nLeftarrow \Sigma\left(A_{\sigma}, B_{\sigma}, C_{\sigma}, D_{\sigma}\right) \sigma$-observable
Example:

$$
\begin{array}{ll}
\dot{x}=x & \dot{x}=0+u \\
y=x & y=x
\end{array}
$$

is σ-observable but not distinguishable for $u(t)=e^{t}$ and $x(0)=1$

Adding inputs

$$
\begin{aligned}
& \dot{x}=A_{\sigma} x+B_{\sigma} u \\
& y=C_{\sigma} x+D_{\sigma} u
\end{aligned}
$$

Input-depending observability

$\Sigma\left(A_{\sigma}, C_{\sigma}\right) \sigma$-observable $\nLeftarrow \Sigma\left(A_{\sigma}, B_{\sigma}, C_{\sigma}, D_{\sigma}\right) \sigma$-observable

Strong vs. weak observability
 observable for all $u \nLeftarrow$ observable for some/almost all u

Further technicalities

Analytic vs. smooth inputs and equivalent switching signals
All problems resolvable \rightarrow see our 2018 Automatica paper

Adding algebraic constraints

$$
\begin{aligned}
E_{\sigma} \dot{x} & =A_{\sigma} x \\
y & =C_{\sigma} x
\end{aligned}
$$

Extended solution space

Distributional solution space \rightarrow Dirac impulses possible
Suitable solution space: Piecewise-smooth distrubutions

Impulses important for observability

Switch		obsv.
open	$y \equiv 0$ for any internal states	x
closed	equilibrium $i_{1}=-i_{2}=$ const $\rightarrow y \equiv 0$	x
closing	$y=0$ jumps to $\neq 0$	\checkmark
opening	non-equilibrium: $y \neq 0$ jumps to zero (+ Imp.)	\checkmark
	equilibrium: $y(t)=0 \forall t$, but with impulse in y	\checkmark

The switch-induced impulse is required to determine x and σ.

System classes

Solution formula for nonswitched DAEs

$$
E_{p} \dot{x}=A_{p} x+B_{p} u, \quad x\left(0^{-}\right)=x_{0}
$$

has unique solution on $(0, \infty)$

$$
x(t)=\mathrm{e}^{A_{p}^{\text {diff }} t} \Pi_{p} x_{0}+\int_{0}^{t} \mathrm{e}^{A_{p}^{\text {diff }}(t-s)} B_{p}^{\text {diff }} u(s) \mathrm{d} s-\sum_{i=0}^{n-1}\left(E_{p}^{\text {inp }}\right)^{i} ⿻^{\text {in mp }} u^{(i)}(t)
$$

Assumption：$B_{p}^{\text {imp }}=0 \rightarrow$ DAE behaves like $\dot{\chi}=A_{p}^{\text {diff }} x+B_{p}^{\text {diff }} u$

Jumps and Dirac impulses still present at switches

$$
\begin{aligned}
& x\left(t_{p}^{+}\right)=\Pi_{p} x\left(t_{p}^{-}\right) \\
& x\left[t_{p}\right]=-\sum_{i=0}^{n-1}\left(E_{p}^{\mathrm{imp}}\right)^{i+1} x\left(t_{p}^{-}\right) \delta_{t_{p}}^{(i)}
\end{aligned}
$$

Observability characterizations

$$
\begin{aligned}
E_{\sigma} x & =A_{\sigma} x+B_{\sigma} u \\
y & =C_{\sigma} x
\end{aligned}
$$

regular with corresponding
$\Pi_{p}, A_{p}^{\text {diff }}, B_{p}^{\text {diff }}, C_{p}^{\text {diff }}$,

$$
E_{p}^{\mathrm{imp}}, B_{p}^{\mathrm{imp}}, C_{p}^{\mathrm{imp}}
$$

Notation:

$$
\mathcal{O}_{k}=\left[\begin{array}{c}
C_{k}^{\text {diff }} \\
C_{k}^{\text {diff }} A_{k}^{\text {diff }} \\
C_{k}^{\text {diff }} A_{k}^{\text {diff }}{ }^{2} \\
\vdots
\end{array}\right], \boldsymbol{O}_{k}=\left[\begin{array}{c}
C_{k}^{\text {imp }} E_{k}^{\text {imp }} \\
C_{k}^{\text {imp }} E_{k}^{\text {imp }}{ }^{2} \\
C_{k}^{\text {imp }} E_{k}^{\text {imp }}{ }^{3} \\
\vdots
\end{array}\right], \Gamma_{k}=\left[\begin{array}{cccc}
C_{k}^{\text {diff }} B_{k}^{\text {diff }} & 0 & & \\
C_{k}^{\text {diff }} A_{k}^{\text {diff }} B_{k}^{\text {diff }} & C_{k}^{\text {diff }} B_{k}^{\text {diff }} & \ddots & \\
C_{k}^{\text {diff }} A_{k}^{\text {diff }} B_{k}^{\text {diff }} & C_{k}^{\text {diff }} A_{k}^{\text {diff }} B_{k}^{\text {diff }} & \ddots & \ddots \\
\vdots & \vdots & & \ddots \\
\vdots & \vdots & \\
\vdots
\end{array}\right]
$$

Observability characterizations

$$
\begin{aligned}
E_{\sigma} x & =A_{\sigma} x+B_{\sigma} u \quad \text { regular with corresponding } \\
y & =C_{\sigma} x
\end{aligned} \quad \begin{aligned}
& \Pi_{p}, A_{p}^{\text {diff }}, B_{p}^{\text {diff }}, C_{p}^{\text {diff }}, \\
& E_{p}^{\text {imp }}, B_{p}^{\text {imp }}, C_{p}^{\text {imp }}
\end{aligned}
$$

Theorem (Assumption $B^{\text {imp }}=0$)
o-observability

$$
\operatorname{rank}\left[\begin{array}{lll}
\mathcal{O}_{i} & \mathcal{O}_{j} & \Gamma_{i}-\Gamma_{j}
\end{array}\right]=\operatorname{rank} \Pi_{i}+\operatorname{rank} \Pi_{j}+\operatorname{rank}\left(\Gamma_{i}-\Gamma_{j}\right)
$$

+ technical impulse condition

Observability characterizations

$$
\begin{aligned}
E_{\sigma} x & =A_{\sigma} x+B_{\sigma} u \\
y & =C_{\sigma} x
\end{aligned}
$$

regular with corresponding

$$
\begin{aligned}
& \Pi_{p}, A_{p}^{\text {diff }}, B_{p}^{\text {diff }}, C_{p}^{\text {diff }} \\
& E_{p}^{\text {imp }}, B_{p}^{\text {imp }}, C_{p}^{\text {imp }}
\end{aligned}
$$

Theorem (Assumption $B^{i m p}=0$)

σ_{1}-observability
t_{s}-observability +

$$
\operatorname{rank}\left[\begin{array}{ccc}
\mathcal{O}_{i} & \mathcal{O}_{p} & \Gamma_{i}-\Gamma_{p} \\
\mathcal{O}_{j} \Pi_{i} \mathcal{O}_{q} \Pi_{p} \Gamma_{j}-\Gamma_{q} \\
\mathbf{O}_{j} \Pi_{i} \mathbf{O}_{q} \Pi_{p} & 0
\end{array}\right]=\operatorname{rank} \Pi_{i}+\operatorname{rank} \Pi_{p}+\operatorname{rank}\left[\begin{array}{c}
\Gamma_{i}-\Gamma_{p} \\
\Gamma_{j}-\Gamma_{q}
\end{array}\right]-\operatorname{dim} \mathcal{M}_{i, j, p, q}
$$

where $\mathcal{M}_{i, j, i, q}=\operatorname{im} \Pi_{i} \cap \operatorname{ker} E_{j} \cap \operatorname{ker} E_{q}$ and $\mathcal{M}_{i, j, p, q}=\{0\}$ for $i \neq p$

[^0]: Partially supported by DFG grant TR 1223/2-1

