

 faculty of science and engineering johann bernoulli institute for mathematics and computer science

Switch-observer for switched linear systems

Stephan Trenn

Jan C. Willems Center for Systems and Control University of Groningen, Netherlands

Joint work with **Ferdinand Küsters** and **Andreas Wirsen**, Fraunhofer ITWM, Kaiserslautern, Germany

Partially supported by BMWi MathEnergy (project number 0324019A) and by DFG grant TR 1223/2-1

Conference on Decision and Control (CDC 2017), Melbourne, Australia, 2017/12/12

The observability problem

Observability questions

- > Is there a unique x_0 for any given σ , u, y? \rightarrow observability \checkmark
- > Is there a unique (x_0, σ) for any given u and y? $\rightarrow (x, \sigma)$ -observability
- > Is there a unique σ for any given u, y and unknown x_0 ? $\rightarrow \sigma$ -observability $\iff (x, \sigma)$ -observability

"Trivial" observer design for (x, σ) -obs.

Instantenous observability

 (x, σ) -observability \implies local state and mode observability

Observer design

1. For each mode run a classical state observer

- 2. Pick the one which converges \rightarrow mode and state estimation
- 3. Repeat

Nothing switch specific

Information at the switch (e.g. jumps) not utilized.

Weaker observability notion

Switch observability (σ_1 -observability)

Recover x and σ from u and y, if at least one switch occurs

Overall observer design

- (0. Detect switching time t_S .)
- 1a. Run partial state observers on $(t_S \tau, t_S)$ for all modes.
- 1b. Run partial state observers on $(t_S, t_S + \tau)$ for all modes.
- 2. Combine partial information to find (i^*, j^*) and state estimation $\hat{x}(t_S)$

Partial state observer

$$\dot{x} = A_p \dot{x} + B_p u, y = C_p x + D_p u,' \quad \mathcal{O}_p := \begin{bmatrix} C_p \\ C_p A_p \\ \vdots \\ C_p A_p^{n-1} \end{bmatrix} \quad r_p := \operatorname{rank} \mathcal{O}_p$$

Choose orthogonal $Z_p \in \mathbb{R}^{n \times r_p}$ with $\operatorname{im} Z_p = \operatorname{im} \mathcal{O}_p^{\mathsf{T}}$, then

$$\dot{z}_{p} = Z_{p}^{\top} A_{p} Z_{p} z_{p} + Z_{p}^{\top} B_{p} u$$

is observable
$$y = C_{p} Z_{p} z_{p} + D_{p} u$$

Definition (Partial state observer)

Any observer for $z_p = Z_p^T x$ is a partial state observer.

Mode dependence

 Z_p and size r_p are mode dependent.

Stephan Trenn (Jan C. Willems Center, U Groningen)

Reasonable modes

Definition (Reasonable modes)

Mode *i* is reasonable on $(t_S - \tau, t_S)$: \Leftrightarrow

 $\exists x_i^{t_S} : y = C_i x_i + D_i u \text{ where } \dot{x}_i = A_i x_i + B_i u, x_i(t_S) = x_i^{t_S}$

In particular, i^* is reasonable on $(t_S - \tau, t_S)$.

Crucial property of reasonable modes

Partial state observers "converge" for all reasonable modes, i.e.

 $y \approx C_i Z_i \hat{z}_i + D_i u$ on $(t_S - \varepsilon, t_S) \forall$ reasonable *i*

Analog definition for reasonable modes *j* on $(t_S, t_S + \tau)$, with

 $y \approx C_j Z_j \hat{z}_j + D_j u$ on $(t_s + \tau - \varepsilon, t_s + \tau) \forall$ reasonable j

Observer design

Summary

Illustration of Steps 1 and 2

F

Summary

Combining partial state estimations

Question

How to combine the obtained information before and after the switch?

Obvious fact

 $\begin{array}{rcl} (x, \sigma_1) \text{-observability} & \Longrightarrow & \text{observability for known } \sigma \text{ with one switch} \\ & \Longrightarrow & \ker \mathcal{O}_i \cap \ker \mathcal{O}_j = \{0\} & \forall i \neq j \\ & \Longrightarrow & \operatorname{rank} [Z_i, Z_j] = n & \forall i \neq j \end{array}$

State estimation candidates

For
$$(i, j) = (i^*, j^*)$$
 we have
 $\begin{pmatrix} \widehat{z_i} \\ \widehat{z_j^+} \end{pmatrix} \approx \begin{bmatrix} Z_i^T \\ Z_j^T \end{bmatrix} x(t_S) \implies x(t_S) \approx \begin{bmatrix} Z_i^T \\ Z_j^T \end{bmatrix}^{\dagger} \begin{pmatrix} \widehat{z_i} \\ \widehat{z_j^+} \end{pmatrix} =: \widehat{x}_{ij}$

Final step

Theorem

For sufficiently accurate partial observers and for all reasonable (i, j)

$$(i,j) = (i^*,j^*) \implies \begin{bmatrix} Z_i^T \\ Z_j^T \end{bmatrix} \widehat{x}_{ij} \approx \begin{bmatrix} \widehat{z_i} \\ \widehat{z}_j^+ \end{bmatrix}$$
$$(i,j) \neq (i^*,j^*) \implies \begin{bmatrix} Z_i^T \\ Z_j^T \end{bmatrix} \widehat{x}_{ij} \not\approx \begin{bmatrix} \widehat{z_i} \\ \widehat{z}_j^+ \end{bmatrix}$$

Summary: Observer design

1. Run partial state observers for

 $\dot{z}_{p} = Z_{p}^{\mathsf{T}} A_{p} Z_{p} z_{p} + Z_{p}^{\mathsf{T}} B_{p} u$ $y = C_{p} Z_{p} z_{p} + D_{p} u$ $\operatorname{im} Z_{p} := \operatorname{im} \mathcal{O}_{p}^{\mathsf{T}}$

on $(t_S - \tau, t_S)$ and $(t_S, t_S + \tau)$

↔ reasonable mode pairs (*i*,*j* $) and partial state estimates <math>\hat{z}_i^-, \hat{z}_j^+$ 2. Calculate candidate full state estimations $\hat{x}_{ij} = \begin{bmatrix} z_i^\top \\ z_j^\top \end{bmatrix}^\dagger \begin{pmatrix} \hat{z}_i^- \\ \hat{z}_j^+ \end{pmatrix}$ ↔ choose unique (*i*,*j*) = (*i**,*j* $*) for which <math>\begin{bmatrix} z_i^\top \\ z_i^\top \end{bmatrix} \hat{x}_{ij} \approx \begin{bmatrix} \hat{z}_i^- \\ \hat{z}_i^+ \end{bmatrix}$

Discussion and Extensions

- > Novel observability notion: Switch observability
 - Assumes that at least one switch occurs
 - Individual modes can have unobservable states
 - Better suited for fault-induced switches
- > Novel observer-design suited to switch-observable systems
 - Based on partial state observers
 - Linear costs in number of possible faults
 - Extension to switched DAEs possible
 - Knowledge of switching time assumed
 - Unavoidable time delay until result is available
 - Choice of specific left-inverse of $[Z_i, Z_j]^{\top}$ crucial for performance