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Modelling Instability due to switching Sufficient stability condition

Power systems model
Power grid consists of
› ng ∈ N generators
› power lines
› ng + nb line connectors (busses)
› power demand at each bus
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Variables
For each generator:
› α(t) and ω(t) angle and angular velocity of rotating mass
› Pg(t) generator power acting on turbine
For each bus:
› V(t) and θ(t) voltage modulus and angle
› P(t), Q(t) active and reactive power demand
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Modelling Instability due to switching Sufficient stability condition

Basic modelling assumptions

Generator

› Rotating mass(es) with linear friction (and linear elastic coupling)
› Constant voltage behind transient reactance model (Kundur 1994)
› sin(α(t) − θ(t)) ≈ α(t) − θ(t)

Busses

› V(t) ≈ 1 (per unit)
› sin(θ − θj) ≈ θ − θj for any adjacent busses  and j

Lines
-model with negligible conductances

,→ reactive power flow can be ignored
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Modelling Instability due to switching Sufficient stability condition

Linearized model

Dynamics of -th generator

α̇(t) = ω(t)
mω̇(t) = −Dω(t) − Pe,(t) + Pg,(t)

where Pe,(t) =
1
z
(α(t) − θ(t)) and m > 0 is the moment of inertia

Linearized power flow balance at each bus 

0 = P(t) + Pe,(t) −
ng+nb
∑

j=1

ℓj(θ(t) − θj(t)),

where ℓj = ℓj ≥ 0 is the line susceptance and Pe,(t) = 0 for  > ng
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Modelling Instability due to switching Sufficient stability condition

Linear DAE model
Overall we get a linear DAE

Ė = A + B

where in our example

 = (α1, α2, ω1, ω2, θ1, θ2, θ3, θ4)>

 = (Pg,1, Pg,2, P1, P2, P3, P4)>
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and, with ℓ :=
∑4
j=1 ℓj,

E =

















1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 m1 0 0 0 0 0

0 0 0 m2 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

















, A =

















0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

-z-1
1 0 -D1 0 z-1

1 0 0 0

0 -z-1
2 0 -D2 0 z-1

2 0 0
z-1
1 0 0 0 -z-1

1 -ℓ11 0 ℓ13 ℓ14
0 z-1

2 0 0 0 -z-1
2 -ℓ22 ℓ23 ℓ24

0 0 0 0 ℓ31 ℓ32 -ℓ33 ℓ34
0 0 0 0 ℓ41 ℓ42 ℓ43 -ℓ44
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Modelling Instability due to switching Sufficient stability condition

General DAE-structure

DAE-model for ng generators and nb busses has the following structure:

Ė = A + B (powerDAE)

with
 = (α1, . . ., αng , ω1, . . ., ωng , θ1, θ2, . . . , θng+nb)

>

 = (Pg,1, . . ., Pg,ng , P1, . . . , Png+nb)
>

and

E =





ng 0 0
0 M 0
0 0 0



 , A =





0 ng 0
-Z-1 -D [ Z-1 0 ]
�

Z-1

0

�

0 -L-
�

Z-1 0
0 0

�



 , B =





0 0
ng 0
0 ng+nb





where L = [ℓj] is the (weighted) Laplacian matrix of the network
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Modelling Instability due to switching Sufficient stability condition

Solvability and Stability
Theorem (Solvability and Stability, Groß et al. 2016)

Consider a power grid network and assume that is connected. Then
› (powerDAE) is regular, i.e. existence and uniqueness of solutions is
guaranteed

› (powerDAE) has index one, i.e. it is numerically well posed
› (powerDAE) is stable, i.e. all solutions remain bounded

Remark
Result remains true for multiple-rotating mass models of generators.
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Modelling Instability due to switching Sufficient stability condition

Topological changes

G G

1 2

3 4

E1̇ = A1 + B1 in mode 1
E2̇ = A2 + B2 in mode 2

or, introducing a switching signal σ : R→ {1,2}

Eσ(t)̇ = Aσ(t) + Bσ(t)

In fact, topological changes (removal / addition / parameter changes of
lines) only effect Laplacian matrix L!

E =





ng 0 0
0 M 0
0 0 0



 , Aσ(t) =





0 ng 0
-Z-1 -D [ Z-1 0 ]
�

Z-1

0

�

0 -Lσ(t)-
�

Z-1 0
0 0

�



 , B =





0 0
ng 0
0 ng+nb
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Modelling Instability due to switching Sufficient stability condition

Simulation
G G
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Parameters:
m1 =m2 = 1
z1 = z2 = 0.1
D1 = D2 = 0.01

0 10 20 30 40 50 60

1
2

σ(t)

0

-100

-200

1(t)

and Laplacian-matrices for both modes:

L1 =







-0.01 0 0.005 0.005
0 -5.005 0.005 5

0.005 0.005 -0.02 0.01
0.005 5 0.01 -5.015






, L2 =







-2.005 0 0.005 2
0 -5.005 0.005 5

0.005 0.005 -0.02 0.01
2 5 0.01 -7.01







UNSTABLE!
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Modelling

Instability due to switching

Sufficient condition for stability under arbitrary switching
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Stability and Lyapunov functions

Eσ ̇ = Aσ (swDAE)

Theorem (cf. Liberzon and T. 2012)
Assume (swDAE) to be regular and index one. If
1. each mode is stable with Lyapunov function Vp(·)
2. Vq(q) ≤ Vp() for all p, q, where q is the consistency projector
then (swDAE) is stable under arbitrary switching.

Remark

If E-matrix is switch-independent and has the form E =
�

E1 0
0 0

�

with

invertible E1, then Vq(q) = Vq().

,→ common Lyapunov function guarantees stability
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Key lemma

Lemma
Consider (E,A) with structure

E =





E1 0 0
0 0 0
0 0 0



 , A =





A1 A2 0
A3 −L1 + A4 −L2
0 −L3 −L4



 ,

where L =
�

L1 L2
L3 L4

�

is a (weighted) Laplacian matrix. If

› (E,A) is regular, index one and stable
› rnkL3 = 1
then ∃ common Lyapunov function for all possible L4
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Structural assumption for stability

Assume V = Vg ∪̇Vc ∪̇V such that
1. Vg are the generator busses
2. no edges between Vg and V

3. full connection between Vg and Vc

4. Laplacian of edges between Vg and
Vc has rank one

5. topological changes only occur in
edges in Vc ∪V

G G

Vg 1 2

Vc 3 4

V 5 6 7

Theorem
Under above assumptions, stability is preserved under arbitrary
switching.
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