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Abstract

Mode observability of switched systems requires observability of each individual mode. We consider other concepts of observ-
ability that do not have this requirement: Switching time observability and switch observability. The latter notion is based on
the assumption that at least one switch occurs. These concepts are analyzed and characterized both for homogeneous and

inhomogeneous systems.
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1. Introduction

Mode observability of switched systems is concerned with
recovering the initial state as well as the switching signal
from the output (and the input) and has been widely studied,
see e.g.|Vidal et al.| (2003) for homogeneous systems, Elham-
ifar et al.| (2009) for inhomogeneous discrete-time systems,
Babaali and Pappas| (2005) for a generic observability notion
of inhomogeneous systems and [Lou and Si (2009) for inho-
mogeneous systems. For a recent overview of observability
for general hybrid systems see De Santis and Di Benedetto
(2016).

Since for mode observable systems it is in particular pos-
sible to recover the state for constant switching signals, each
mode necessarily has to be observable. In the context of fault-
detection (or diagnosis) the different modes of a switched
system describe faulty and non-faulty variants of the system
and a switch represents a fault. Requiring observability of
each mode, in particular of each faulty mode, might be a too
strong assumption. Instead of mode observability, it would
be sufficient to compute the switching signal and the state if
an error occurs. This idea is formalized in the novel notion of
switch observability, (x, o,)-observability for short.

Before characterizing (x, o, )-observability, we first have to
consider the problem of detecting switches (switching time
observability or tg-observability). This has been done in |Vi-
dal et al.| (2003) in the homogeneous case, but the general-
ization to inhomogeneous systems is not straightforward as
the switch might occur in an interval where the state is zero.
This difficulty has been avoided so far, e.g. in|Elhamifar et al.
(2009) by assuming mode observability. We are able to re-
lax this assumption and to fully characterize t¢-observability
without any additional assumptions.

Similar to the classical observability of linear systems, we
derive characterizations of the observability notions based on
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rank-conditions on the Kalman observability matrices. Our
results are summarized in Figure |1} where ; and T} are the
Kalman observability matrix and Hankel matrix of mode i,
respectively. These notions are defined in Section [2| and
rk(A) denotes the rank of A.

The first column in Figure [I] gives the result for the homo-
geneous case: The strongest notion considered here is (x, 0)-
observability, which coincides with switching signal observ-
ability (o-observability). It implies (x, 0, )-observability and
ts-observability. The reverse implications are false in general,
we will show this by some examples. For the inhomogeneous
case, we consider two different setups. First we restrict our
attention to systems with analytic input and with some re-
striction on the input matrices (assumption ). Then we
drop and require only smooth input. This makes it nec-
essary to consider equivalence classes of switching signals,
but gives observability notions with the same characteriza-
tions as in the more restrictive setup.

Our main contribution is the concept of (strong) (x,oc;)-
observability and its characterization. Also the characteri-
zation of strong switching time observability for inhomoge-
neous systems is new.

2. Homogeneous Systems

2.1. System class and preliminaries

A switching signal is a piecewise constant, right-continuous
function 0 : R —» & := {1,...,N}, N € N, with locally
finitely many discontinuities. The discontinuities of o are
also called switching times:

T, :={tg €R | tg is a discontinuity of o }.

We assume that all switches occur for t > 0, i.e. T, C R.,.
Consider switched linear systems of the form

x =Asx, x(0)=x,, (1a)
y =Cyx, (1b)
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Figure 1: Brief characterizations of the observability notions and their relations. Novel results are indicated by bold boxes.

with switching signal o and A; € R™", C; e RP*" for all i €
2 and denote its solution and output by x(, ) and y(y, )
respectively.

Furthermore, let ﬁi[v] be the Kalman observability matrix
for mode i with v row blocks, i.e.

(CiAivfl)T]T

and let ﬁi[oo] be the corresponding infinite Kalman observ-
ability matrix. For observability of unswitched systems, it
suffices to consider v = n. In our setting, the required size
increases as we have to compare the output from different
modes.

For any sufficiently smooth function y : R — R? denote
by y["1: R — R the vector of y and its first v — 1 deriva-
tives and by y[°] the (countably) infinite vector of y and
its derivatives. The same can be done for piecewise-smooth
functions, where y(t~) and y(t*) denote the left-hand side
and right-hand side limit at t, respectively. Then the output
Y(xp,0) Of (@D satisfies for all t € R:

0;[”]=[Cf (CA)T (CiAlZ)T

Y () = 0L x(r, (), vENU{o0},
Yo () = 05 x(, o)), vENU{o0}.

2.2. Known results and definitions
Definition 1. The switched system is called

- (x, 0)-observable iff for all (xg,X,) # (0,0) the following
implication holds:

(xg#Xo V O #0)

i.e., iff it is possible to determine simultaneously the state
and current mode from the output;

= Vixgo) E VE.5) )

- o-observable iff for all (x,, X,) # (0, 0)

CET = Yyo)E V5) 3)

i.e., iff it is possible to determine the current mode from
the output;

- tg-observable (or switching time observable) iff for all
Xo 7 0, o nonconstant and all X, 0

To #Ts = Yixpo) Z Y 5)

i.e., iff it is possible to determine the switching times from
the output.

Clearly, (x, o)-observability implies o -observability which
in turn implies tg-observability. Furthermore, it seems quite
obvious that it is much harder to determine both the state
and the switching signal compared to just determining the
current mode from the output. However, this intuition is
wrong:

Lemma 2. For the switched system it holds that
(x,0)—observability < o —observability.

Proof. The implication “=” is clear. Now let the system be
o-observable, but not (x,o)-observable. This means there
exist (xg, X) # (0,0) and o, ¢ with

(o #Xo VO ZEGT) A Yixyo) = V5,5)

o # & would contradict o-observability. Hence we have o =
0 and xq # X,. This means y(,, ») = ¥(x, ) and, by linearity,
Y(xo—%,,0) = 0- This contradicts o-observability, as it implies
Yixg—F0,0) = 0 = Y(0,6) for all &. m|



This relation was already implicitly stated in [Elhamifar
et al.| (2009) for discrete-time systems. Note that observ-
ability of the (continuous) state in each mode is necessary
for (x,o)-observability (just consider the constant switch-
ing signals). However, state-observability in each mode is
not sufficient for (x, o)-observability (c.f. Babaali and Pappas
(2005)). A trivial counterexample for the latter is a system
for which each mode describes the same observable system.

The next example shows that tg-observability is indeed
weaker than (x, o)-observability:

Example 3. The system (I)) with modes
(Al’cl)z([g(l)]’[lo])7 (A27C2):([8(1):|’[01])

is tg-observable, but not (x, o )-observable as the individual
modes are not observable.

Remark 4 (Observability and invertibility). Most observ-
ability notions are concerned with the invertibility of certain
maps involving the output and it is helpful to compare the
different concepts side-by-side in regard of these sought in-
verse maps, see Table[l] For this comparison we consider a
general nonlinear switched systems as in Figure

]

X = fo(x,u),

¥y =h,(x,u)

f

g

x(0) = x,

Figure 2: General nonlinear switched system with initial state x,, input u,
switching signal o and output y.

sought map name, reference footnotes
(yv,u,o0) — xg observabili
(¥,x9) ~— (u,0) invertibili
(y,u=0) - (x,0) (x, a)-observabilit}ﬂ
(y,u=0) - o o-observability
(y,u) = (xp,0) strong (x, a)—observabilit}ﬂ
(yu) —» o strong o-observability

Table 1: Comparison of different observability notions based on the sought
inverse maps.

Note that most results on observability of switched systems
are only for the linear case (one exception is [Tanwani and
Liberzon/ (2010)).

We now recall the known characterization for tg- and
(x, o)-observability in terms of the Kalman observability ma-
trices:

1Petreczky et al.| (2015)

2Vu and Liberzon| (2008); Tanwani and Liberzon| (2010)
3Vidal et al.| (2003); |Babaali and Pappas| (2005)
“4Babaali and Pappas| (2005); [Lou and Si| (2009)

Lemma 5 (Vidal et al.| (2003)). System is tg-observable
if, and only if,

k(P — 0P ) =n Vi, jeP withi#].
It is (x, o )-observable if, and only if,
k[P 0P =2n Vi jepwithi#j. (@

The characterization can be nicely interpreted by con-
sidering the homogeneous augmented system Z}?‘;m, i,je?:

. A O

=[5 Ale

=[G —G]lg,

because (4) is equivalent to (classical) observability of Z}?gm ;

indeed 01.[;)] = [@M, —0]“]]. This also justifies why it suffices
to consider the order v = 2n in (@).

hom .
Zi,j :
Ya

i.j

2.3. o,-observability

As already mentioned in the introduction assuming observ-
ability of each (in particular, each faulty) mode is often too
restrictive. Furthermore, the notion of (x, o )-observability
(and hence o-observability) reduces to the ability to deter-
mine the current mode of a (locally) unswitched systems. In
particular, the event of the switch itself is not utilized for re-
covering the switching signal. We illustrate this with the fol-
lowing example:

Example 6. The system (1) with modes
(AI’ Cl) = (0’ 1)’ (AZ’ CZ) = (0’ 2)

is not (x, o )-observable, because both systems produce con-
stant outputs for constant switching signals. However, in the
presence of a switch, the output is either halved or doubled,
which allows us to determine whether we switched from
mode 1 to 2 or vice versa. This observability property is lost if
we modify C, to —1, because the output then just changes its
sign and we are not able to distinguish the two possible mode
sequences. However it is still possible to detect the switch-
ing time, because of the sign change (which always occurs as
long as x, # 0, which we assumed here).

This motivates us to define the following more suitable ob-
servability notion:

Definition 7. The system () is called (x, o,)-observable (or
switch observable) iff (2)) holds for all x, # 0 and all o with at
least one switch, i.e. o nonconstant, and all X, &. It is called
o-observable iff (3) holds for x,, X,, o, & as above.

Lemma [2| holds accordingly and gives
(x,0,)—observability < o, —observability. (6)

We now present our first main result which characterizes
(x, 0;)-observability for homogeneous switched linear sys-
tems.



Theorem 8. The system is (x, 0 )-observable if, and only
i, for all i, j, p, q € 2 with i # j, p # q and (i, j) # (p,q):

0}[271] 0[211]

3 —

rk 0[2n] 017:2,1] =2n. (7)
J q

Proof. “=”: Assume that does not hold, i.e. there exist
i, j, p, q as above and (x;,x;) # (0,0) such that

01'[2"] 0IEZH] x; _ 0 (8)
0j[2n] ﬁq[Zn] x| |0]"

Without loss of generality, we can assume x; # 0. Define

(0, Xo) := (et x;,e X, ) and
i, t<tg, ~ , t<tg,
o=1" "2 Fm={" 2% (9
J’ t 2 tS’ q, t 2 tS‘

Then we have x; # 0 and o # &. From (8) we can conclude

Y ) =y h (e) Ay () = b (6.
In terms of (5)) With initial value (x;, x;) this is equivalent to
[2”](0) =0andy A, "](0) 0 . By the classical observability

theory, this implies yA (O) =0and y[oo](O) =0,ie yp =
0 and Ya,, =0. We can conclude Vixgo) = Y(%y.5)-

“e»; Using (e), it suffices to show o;-observability. (7))
implies tg-observability as for p = j # i = q we have

|:ﬁ[2n] ﬁ[Zn]:| |:ﬁ[2n] _ 0[2n]:|

rk| J =2n = rk| | J =n

[2n] [2n] [2n] [2n] :

o g o0

Now let x,, Xy, 0 and & be given with x, # 0, o noncon-
stant and o # G. It remains to show y(, ») # ¥(x,5)- For
T, # Ty this follows directly from tg-observability, hence let
T, = T5z. Then there exists a common switching time tg with

o(ts) #0(ty) or o(ty) # o(t). Let i, j, p, q be as in (9).
As x(xg,cr)(ts) 7é O, implies

[2n] — [2n] (. — [(2n] (. + [2n] (. +
Thus the system is o;-observable. O
Condition also appears in Johnson et al.| (2014) as a
characterization of what those authors call ST-observability.

The main difference to our approach is that observability of
the individual modes i, j, p is assumed there.

Remark 9. |Vidal et al.| (2003)) chose a different approach for
observability of systems with nonconstant switching signals.
They required for all i # j:

k[gP 0PV =1tk oM + 1k o™, (10)

which guarantees that one can determine the current
mode whenever the output is nonzero. Together with tg-
observability, this gives that mode and state can be deter-
mined whenever the switching signal is nonconstant and the
initial state is nonzero. This means and tg-observability
imply (x,o,)-observability. The reverse is not true, as the
first part of Example [6] shows.

Clearly, (x, o)-observability works also for systems with
more than one switch, but then each switching instant
is treated independently of the others (analogously as for
(x, 0)-observability each mode is treated independently of
the others). If we restricted our attention to systems with at
least two (or more generally at least k) switches and defined
(x, oy )-observability accordingly, one would get even weaker
conditions than (7). However, these conditions would then
depend on the differences of the switching times, i.e. the
duration times. It is questionable whether these weaker ob-
servability notions are really relevant in praxis and whether
the technical effort to find corresponding characterizations is
justified.

The results of this sections for homogeneous linear
switched systems are summarized in the left column of Fig-
ure[IJand Example [6]shows that the converse implications do
not hold in general.

3. Inhomogeneous Systems

For unswitched systems or switched systems with known
switching signal the system dynamics are known and thus the
output’s dependence on the input can be computed a priori; it
is therefore common to restrict the analysis to homogeneous
systems. For unknown switching signals this reduction to the
homogeneous case is not possible, because the effect of the
input on the output depends on the switching signal.

There are several ways to generalize the observability no-
tions to inhomogeneous systems, depending on the treat-
ment of the inhomogenity. We consider strong observabil-
ity notions, i.e. we require the system to be tg-/o-/(x,0)-
/(x, 0)-observable for all inputs. Other approaches are that
one requires the existence of an input that makes the system
observable (weak notion) or requires observability for almost
all inputs. This generic notion actually coincides with the
weak one, see Babaali and Pappas| (2005). The literature fo-
cuses on the weak or the generic case, see e.g. |De Santis and
Di Benedetto (2016)); Baglietto et al.| (2007) and we are not
aware of available results for strong observability notions.

We consider the switched system

x =A,x +B,u,
y =C,x+D,u,

x(0) = xy, (11a)

(11b)

with matrices A; € R™", B; € R™4, C; € RP*", D; € RP*?
fori € 2. Solutions and outputs are denoted by x(, ;) and
Y(xo,0u)» Tespectively. In order to define suitable observability
notions we make the following two assumptions:

u analytic, (AD

B;

ker | B; ={0} Vi#]j.

(A2)

Definition 10. Consider the switched system satisfying
(A2). Then we define to be strongly (x, o)-/o-/(x,01)-
/tg-observable iff the analogous conditions of Definitions
and|[7]hold for all inputs u satisfying (AT).



Figure 3: For u and x the solutions of Example [11]| are the same for the
switching signals o and &.

Analogously to Lemma [2| it can be shown that strong
(x, 0)-observability is equivalent to strong o -observability.

We have seen in the homogeneous case that a zero state
trajectory makes it impossible to observe the switching sig-
nal because Yo ) = 0 for all o; this problem was easily re-
solved by excluding the initial state zero. In the inhomoge-
neous case this is not sufficient as the following two exam-
ples show; in fact, these examples show that without
and a zero state trajectory is possible on some interval
even for nonzero initial values.

Example 11. Consider the system (11I)) wit
(A1,B1,Cy, D) = ([8 ] [
(A, By, Cy, Dy) = ([(1) :|
(A3, B3, Cy,D3) := ([% ])

This means assumption does not hold. Define x, :=

0
0
0
1
0
2

>
>
>

[10]", u(t) := —%cos(%t) and
1, t<1, 1, t<1,
o(t):=42, 1<t<2, o(t):=43, 1<t<2,
1, t=2, 1, t=2.

Then x(xo,a,u)(]-) = X(Xo’a’u)(l) = [8] and thus x(xo,a,u)(t) =
X(xy 5.0 (1) = [8] for t € [1,2]. Hence the switching signals
cannot be distinguished for this particular choice of input.
This example is illustrated in Figure

The second example shows what can happen when as-
sumption is not satisfied.

Example 12. Consider the system (11) with mode
(A1,B,Cy,D;) = (0,2,1,0) and some other, not fur-
ther specified mode 2. For a given x;, and 0 = 1 one can
choose a smooth input u with supp(u) =[0,1]U[2,3] such
that Xy, »4) is zero on the interval [1,2]. This means o7y )
has no effect on the solution and hence the system cannot
be tg-observable or even (x,o)-observable. Such a u is
clearly non-analytic. In contrast to the previous example, no
switch is required to achieve an interval with zero state, see
Figure [4

For a characterization of strong (x,o)-observability we
need to define I'™") corresponding to the unswitched inho-
mogeneous system

x =Ax + Bu,
y=Cx+Du

Figure 4: In Example the value of ¢ in the interval [1,2] does not have
any effect on the solution as the state is zero.

by
D

CA"™@B --- CB D
with v block rows and block columns. T't* denotes the cor-

responding infinite matrix. Note that any solution (x,u, y)
of the unswitched system 3 satisfies for any v € N:

Y01 = Uy 4 Ty,

We would like to recall the notion of unknown-input observ-
ability for unswitched systems:

Definition 13. The system X is unknown-input (ui-) observ-
ablrf] iff y = 0 implies x = 0 (independently of the input
u).

A system Y is ui-observable iff

rk[ @M 1" = n+ rk Tl

or, equivalently,

A—slI B B
rk[ c D]—n+rk[D] Vs €R,

see [Kratz (1995) and |Hautus| (1983), respectively. This
means the system is ui-observable iff it has no zeroes (in the
sense of Hautus| (1983))).

Applying this characterization on the augmented system
D L]EP:

ne L0 alerls)e
ya, =[C —C;l&+(D;—Dj)u,

L]

we can conclude that ¥; ; is ui-observable if and only if

[2n] _ p[2n]
L= ]

=2n+1k (1?7 -1, (12)

0[2n]

[2n]
k[ g

SHautus| (1983) uses the notion strong observability, however, we follow
instead the naming convention from Basile and Marro| (1973) in order to
avoid confusing with our strong observability notion for switched systems
(where we still assume that the input is known).



If holds for all i # j, one can determine mode and
state of the system as long as the state is nonzero. This has
already been shown by[Lou and Si|(2009). By requiring (AT)),
and x, # 0 we can guarantee that on any interval the
state is not constantly zero or the mode can be uniquely de-
termined by the direct feedthrough. Hence we have:

Lemma 14 (cf. [Lou and Si (2009)). System satisfying

and is strongly (x, o)-observable if and only if
holds for alli, j € 2, i # j.

For the characterization of tg-observability, the following
notion will be essential:

Definition 15 (Trentelman et al. (2001)). The set of con-
trollable weakly unobservable states of the system % is

Ju(-) smooth,T >0 :
R(X):=1 x, €R" .

y(xo’u) =0and X(Xo’u)(T) =0

Note that one obtains the same set if we restrict the inputs to
be analytic. Furthermore, Z (%) = {0} if, and only if,

rk[A_SI B} 0 +rk[g}, for all but finitely

C D many s € R,

see Trentelman et al.| (2001)).

Lemma 16. Let satisfy (A), and
R (Zi,j) ={0} foralli#j.

Let (xq, %) # (0,0), uand o, & be given with o(T*) # &(T™)
and X(y, 0.u)(T) = Xz, 5(T) = 0 for some T > 0. Then
y(xo,o,u) ¢ y()?(,,ff,u)'

(13)

Proof. As a nonzero state is steered to a zero state, the input
u cannot be zero. Using (AI), this means that u is nonzero
on any interval.

Let £ := [T, T +¢], € > 0, be an interval with ¢ and &
constant. Seti:=o(T*)and j:=o(T"). f Bu=Bu=0
on.#, implies D;u # Dju on .#, hence y(, o) Z Y(%,.5.u)-

Thus let B;u # 0 or B;u # 0 on .#. This means that for some
t € . we have (x1,%;) 1= (X(y, 0.0 (E), X(z,.5.(E)) # (0,0).
Yixoo) = Y(5o5u) O0 & would imply (x;,X;) € %(Zi’j),
hence the outputs have to be different. O

Lemma 17. Consider the switched system satisfying
and (A2). Then is strongly tg-observable if, and only if,
holds and, for all i # j,

[2n]  o[2n] p[2n]  ol2n]] [2n] _pl2n]
k[P —oP" TP = k(1P -1 (14

Proof. Necessity of (13): Assume there exists [;ﬁg] €
Z(%; ;) \ {0}. This means there exists an analytic input u
and a time tg > 0 such that

Yixorin) = YEoju) N Xx,i)(ts) = Xz, j)(ts) =0.  (15)

Both y(,, i) and ¥z, ;) are analytic. Define o =1 and

5(t) = {l
75

Then y(y, o.u) a0d ¥(x, 5, coincide on (—00, tg) by definition
and on [tg, 00) by (15). Hence for this specific initial value
and input it is not possible to detect a switch from mode i to
mode j at time tg.

Assume that does not hold for some i # j, i.e. there
exist some x; # 0 and U with @[zn]xl + Fi[zn]U = ﬁj[zn]xl +

Fj[zn]U. In particular, (12) does not hold (as the nonzero vec-

T.. . .
tor [XI —xlT UT] lies in the kernel of the matrix on the

left hand side). Hence by Lemma 14| there exists some input
a with Yy, i) = Yix,j)- Now let tg > 0, u(-) := (- — tg),
o =1i,0 asin and x, such that x,, o .)(ts) = x;. By
construction of ¢ and G, Y(x, ou) and Y(y, 54 coincide on
(=00, t5). Due to y( i) = Y(x,,jn they also coincide on
[tg, 00). Hence the system is not strongly ts-observable.

To show sufficiency of and for strong tg-
observability, consider x, # 0, u and ¢ with switching time
ts. Let X, and G be given with tg ¢ Tz. As we want to
show that the outputs of these solutions differ in an neighbor-
hood of tg, it suffices to consider T, = {ts} and & constant.
This means that y 5, is analytic. Equation gives

2 _ 2
that for x, . .(ts) # O we have y([x(:l’]g’u)(ts) + y([x(i]o’u)(t;),
hence y, o) Z Y50 Now let xq .)(ts) = 0, then
Yixoou) = Y(Fo,5.0) would imply that Yixpou) 18 analytic, i.e.
that it coincides with y(, 4. for 6(t) = o(tg) Vt. Now

Lemma 16| gives a contradiction to ¥y, o) = ¥(xy.6.0- O

t <t

16
t > tg. (16)

Remark 18. Regarding we observe the following:

(i) In[Elhamifar et al.|(2009) strong t¢-observability is char-
acterized for discrete time switched systems in terms of (14)),
but condition does not occur. The reason is due to
stronger assumption made in [Elhamifar et al.| (2009) which
are specific to the discrete time set up; in particular, they re-
quire that each individual mode is observable.

(ii) The conditions and of strong tg-observability
are indeed not related. Consider for example the system
given by

(AlaBl’ClaDl) = (0; 1> 2’ 0)’

(AZ:BZ7 CZ: DZ) = (OJ 2: ]-7 0) >
which satisfies but not (I3). On the other hand
holds for any system with B; = 0 for all i € &, hence it does

not imply in general.

(iii) does not imply Z2(%;) = {0} for the individual
modes. As an example, consider the system (11)) with modes
(A1531: Cl:Dl) = (0; 1’ 0, 0):

(AZ’BZ’ CZ) DZ) = (0: 1’ ]-9 0) .

It is strongly ts-observable, in particular, 2(%;,) = {0}.
However, for the first mode we have Z (%£;) =R.



(iv) and are indeed weaker than (I2): The ex-
ample from is strongly tg-observable, but not strongly
(x, 0)-observable as ¢, = 0.

Theorem 19. The switched system satisfying and
is strongly (x, o1 )-observable if and only if it satisfies
and, for all i, j, p, g € P with i # j, p # q and (i, ) # (p,q)

ﬁi[4n] 0[41‘!] Fi[4n]_r£4n] I'i[4n]_FP[4H]
rk ﬁ{4n] 0[4’1] 1"!:4n]—1"[4”] =2n+rk 1"!:4’1]_1"[471] . (17)
J q J q J q

Here the order of the observability matrix is doubled with
respect to the previous results. If we only considered v = 2n,
a vector U as in the proof of Lemma [17| might be related to
different inputs u and @ on the pre-switch interval and post-
switch interval.

Again, the statement can be related to ui-observability of
an augmented system: (17) is a necessary — but not sufficient

— condition for ui-observability of the system %, ; , ; defined
by
A; 0 B;
A. - :[ L.p ], B . :[ l’P],
i,j,0,d 0 A L1047 | B
C; 0 D;
C,. :[ Lp }’ D :[ l’pil.
L.j.p.q 0 Cy 4| D, o

Proof of of Theorem “(13) and = strong tg-
observability”: From withp=j,q=1iandi# j, we can
conclude (I4). Then the claim follows by Lemma

“Strong (x, o, )-observability = (13)”: Follows by Lemma
as strong tg-observability is necessary for strong (x,o)-
observability.

“Strong (x, o )-observability = (17)”: Assume that
does not hold for some i, j, p, q, i.e. there exist (x;,%;) #
(0,0) and U such that

|:ﬁi[4"] ﬁp[4n] Fi[4n] _ F[E4rl]i| le [0
(4n]  slan]  plnd _plan) | | 7X0 T o
ﬁj ﬁq Fj 1ﬂq

We get that %; is not strongly observable, i.e. for the

,Jspq

e . ~T7T A
initial value n; := [xlT xlT x1T xlT] and some i with
a1(0) = U we have Yo, = 05 i€ Yoo = Y pn

and Yy, ja) = Y(5,q40) Define o and G as in (©) for some
tg > 0 and let u(-) := a(- — tg). Let x, and X, be such
that X(XO,U,M)(tS) = X1 and X(;O’a.’u)(ts) = fl' Then we
get Yixpom) = Y, 5u> -6 (1) is not strongly (x,o04)-
observable.

“(13) and = strong o,-observability”: Let x,, X,, 0,
& and u be given with x, # 0, o nonconstant and o # G.
We want to show that this implies y(,, o) = Y(%,,5,0) Assume
T, = T5 as otherwise t¢-observability — which we have by the
first step — would yield y(y, 5 .) Z ¥(%,5.0)- Then there exists
a common switching time tg with o(t5) # &(t5) or o(t3) #
o (tg). Define x; := X(y, 5..)(ts) and Xy := x5, 5 ,.)(ts). Con-
dition implies that only for (x;, X;) = (0,0) we can have

[4n] -y _ ,,[4n] - [4n] +y — . [4n] +
y(xo,a,u)(ts )= y()?oﬁ,u)(ts ) A y(xo,a',u)(tS )= y(fo,a,u)(ts )

However, in this case Lemma [16| already implies y(, o.u) #
Y(&,,5.u) Asin Lemma we have equivalence of strong o;-
and strong (x, o,)-observability. |

4. Equivalent switching signals

In the previous section we have highlighted the problem
that the switching signal cannot be determined when state
and input are identically zero on an interval. This problem
was avoided by making the assumptions and (A2). We
can consider smooth instead of analytic input and can drop
if we consider equivalence classes of switching signals:

Definition 20. For given x, € R" and u : R — RP? the
switching signals ¢ and G are equivalent for the switched
system (II), denoted by o ‘X' &, iff Xixepou) = X(xgdu)>
Yixoon) = Y(x,50) and 0 = G, except on intervals .# with
(x(xO’U’u)) 4 = 0. The corresponding equivalence class is

denoted by
I:O-(xo,u)} = { o ‘ o X (0} },

and the essential switching times are given by

T[O'(xo,u)] = ﬂ Ta‘.

~XQsu
o ~O0

A similar equivalence has been considered in Kabal (2014) in
the context of invertibility of switched systems.
For u analytic, (x4,u) # (0, 0) and systems satisfying
we have [0, ,)] = {o}, i.e. trivial equivalence classes.
Adaption of Definition [10]to equivalence classes of switch-
ing signals gives:

Definition 21. The system (11)) is called

- strongly (x,[o])-observable iff for all smooth u and all x,,
Xy, 0, 0 the following implication holds:

(%0, [0 ]) # (oo [T @ ]) = Yivpon Z Yooy (18)

- strongly (x,[o1])-observable iff holds for all smooth u
and all x,, Xy, o, & with

Xo,U

1Smin{|T&| b ~o0o }

- strongly [tg]-observable iff for all smooth u and all x,, X,
o, 0 the following implication holds:

Ttotym] 7 Ti6,00] = Yxoom) Z V(E5.05

One can also define strong [c]- and strong [o4]-
observability. Lemma [2] holds accordingly. @ While the
setup is more general, the same characterizations hold:

Theorem 22. The system is strongly [ts]-/(x,[o1])-
/(x,[o])-observable if and only if, the conditions (13) +(14),
@3+, are satisfied, respectively (c.f. Figure[I).



For the proof we need a new version of Lemma

Lemma 23. Let 0, G, X, X, and u smooth be given such that
ts € Tiop) \ Tio,0) M X(xp.00(Ls) = X(5,,5,0(ts) = 0 for
the solutions of (11)). Then (13) implies y(y, ou) Z Y(%,,5.u)-

Proof of Lemma|23] If the conditions for equivalent switch-
ing signals were satisfied on the interval .# := (tg—e¢,tg+¢)
for some ¢ > 0, we had tg ¢ Totym] \ LCNE Thus
y(XO,U,u) % y(;(o,a’u) on .¢ or x(XO,O',u) 7_é x()?o,ﬁ,u) on .¢. Assume
that € > 0 is small enough such that o and & are constant on
(ts—e, tg), (ts, ts+¢€). Assume that y(y, 5u) = Y(%,,5.) O0 F-
AS X(y, o) a0d X (3, 5,,) coincide for t = tg, X(x, o.u) Z X(%,,5.u)
on .# implies that there exists a T € £ with o(T) # &(T)
and (x;, %) == (X, 0.0)(T), Xz, 5.0 (T)) # (0,0). Then we
get (x1,X])€R (ZU(T),E(T))’ i.e. a contradiction to (I3). O
Proof of Thm. First of all, note that the arguments
for necessity of (12)), (13), (14), and apply also in this
setup. Also, Lemma [2|holds accordingly.

“Sufficiency, strong [o]-observability”: Let [0y, )] #
[O(%,w]- Then there exits a time t such that y(, o.)(t) #

y(fo,ﬁ,u)(t) or (X(XO,U,u)(t)7 x(fo,ﬁ,u)(t)) ?é (0, 0) In the latter
case, (12) gives y(x, o.u)(t) # ¥(x,,5.0(t)-

“Sufficiency, strong [tg]-observability”: The proof is simi-
lar to the one in the previous section. For x(y, ».)(ts) # O
we use (14), for x(, ».)(ts) = Xz, 5.u:(ts) = 0 we can use
Lemma Now let x(xo,cr,u)(tS) = 0 and x(%,&,u)(ts) 7é 0.
We can use to obtain Y(y, o) Z Y(%,5.u) OF X(%,5.u) €
ker O,), which can be put down to the case x(z, 5 ,,)(ts) = 0.

“Sufficiency, strong [o;]-observability”: We can assume
that o and & have the same essential switching times, as
else strong [ tg ]-observability implies that the corresponding
outputs differ. If there is a switch with o(tg) # o(tg) or
o(td) # & (ty) and nonzero state, (I7) gives that the outputs
differ. If all switches with o(ty) # G(tg) or o(ty) # &(t)
occur for zero states, one can show (similar to the proof of
Lemma 23) that [0y )] = [T (x,1)] OF Y(xp0) Z Y(o0- O

5. Conclusion

Switching time observability and switch observability were
introduced and characterized by rank-conditions. The rela-
tion of these notions is illustrated in Figure A possible
future research topic is the extension to the case of switched
differential-algebraic equations (DAEs); we already have ob-
tained some preliminary results in Kiisters et al.| (2017bja).
Based on the notion of strong (x, o;)-observability, another
future research topic is the construction of an observer; some
preliminary results have been presented in Kiisters et al.
(2017¢).
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