IF YOU HAVE ANY QUESTIONS CONCERNING THIS MATERIAL (IN PARTICULAR, SPECIFIC POINTERS TO LITERATURE), PLEASE DON'T HESITATE TO CONTACT ME VIA EMAIL: trenn@mathematik.uni-kl.de

7 Consistency projector

Definition (Initial trajectory problem (ITP)). Given past trajectory $x^0 : (-\infty, 0) \to \mathbb{R}^n$ find $x : \mathbb{R} \to \mathbb{R}^n$ such that

$$\begin{array}{c} x|_{(-\infty,0)} = x^{0} \\ (E\dot{x})|_{[0,\infty)} = (Ax+f)|_{[0,\infty)} \end{array} \right\}$$
(ITP)

"Theorem": Consider (ITP) with regular (E,A) and f = 0. Choose S,T invertible such that

$$(SET,SAT) = \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right)$$

Then any solution x of (ITP) satisfies

$$x(0+) = \Pi_{(E,A)} x(0-)$$

where

$$\Pi_{(E,A)} := T \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} T^{-1}$$

is the *consistency projector*.

Proof: Let $\begin{pmatrix} v \\ w \end{pmatrix} = T^{-1}x$ and $\begin{pmatrix} v^0 \\ w^0 \end{pmatrix} = T^{-1}x^0$, then x solves (ITP) with $f = 0 \iff \begin{pmatrix} v \\ w \end{pmatrix}$ solves

$$\begin{array}{c} v |_{(-\infty,0)} = v^{0} \\ \dot{v}_{[0,\infty)} = (Jv)_{[0,\infty)} \end{array} \right\}$$
 (*)

and

$$\begin{cases} w |_{(-\infty,0)} = w^{0} \\ (N\dot{w})_{[0,\infty)} = w_{[0,\infty)} \end{cases}$$
(**)

Since (*) is an ODE on $[0,\infty)$ we have

$$v(t) = e^{Jt}v(0-) \quad \forall t \ge 0$$

In particular, v(0+) = v(0-) From Lecture 1 we know that (**) considered on $(0,\infty)$ implies

$$w(t) = 0 \quad \forall t > 0$$

In particular, w(0+) = 0 (independently of w(0-))

Altogether we have

$$\begin{pmatrix} v(0+)\\ w(0+) \end{pmatrix} = \begin{pmatrix} v(0+)\\ 0 \end{pmatrix} = \begin{bmatrix} I & 0\\ 0 & 0 \end{bmatrix} \begin{pmatrix} v(0-)\\ w(0-) \end{pmatrix}$$

hence

$$x(0+) = T\begin{pmatrix} v(0+)\\ w(0+) \end{pmatrix} = T\begin{bmatrix} I & 0\\ 0 & 0 \end{bmatrix} \begin{pmatrix} v(0-)\\ w(0-) \end{pmatrix} = T\begin{bmatrix} I & 0\\ 0 & 0 \end{bmatrix} T^{-1}x(0-) = \Pi_{(E,A)}x(0-)$$

Remarks.

a) $\Pi_{(E,A)}$ does not depend on the specific choice of S and T. STEPHAN TRENN, TU KAISERSLAUTERN b) At this point we haven't actually shown that (ITP) has a solution!

Theorem. Let (E,A) be regular. In the correct distributional solution space the ITP has a unique solution for all f.

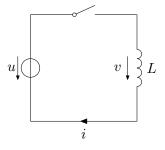
In particular, jumps and Dirac impulses at initial time are uniquely determined.

Attention: Choosing the right solution space is crucial and not immediately clear!

Here: Solution space = Space of *piecewise-smooth distributions* $\mathbb{D}_{pwC^{\infty}}$

8 Switched DAEs: Definition

Recall example from Lecture 2:



Switch \rightarrow Different DAE models (=modes) depending on time-varying position of switch

Switching signal $\sigma : \mathbb{R} \to \{1, \dots, N\}$ picks mode number $\sigma(t)$ at each time $t \in \mathbb{R}$:

$$E_{\sigma(t)}\dot{x}(t) = A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t)$$

$$y(t) = C_{\sigma(t)}x(t) + D_{\sigma(t)}u(t)$$
(swDAE)

Each mode might have different consistency spaces

 \Rightarrow inconsistent initial values at each switch

 \Rightarrow distributional solutions, i.e. $x \in \mathbb{D}^n_{\mathrm{pw}\mathcal{C}^\infty}$

Corollary. Let

$$\Sigma_0 := \left\{ \left. \sigma : \mathbb{R} \to \{1, \dots, N\} \right| \sigma \text{ is piecewise constant and } \sigma \big|_{(-\infty, 0)} \text{ is constant } \right\}.$$

Consider (swDAE) with regular $(E_p, A_p) \forall p \in \{1, \ldots, N\}$. Then

$$\forall u \in \mathbb{D}^n_{\mathrm{pw}\mathcal{C}^\infty} \ \forall \sigma \in \Sigma_0 \ \exists \ solution \ x \in \mathbb{D}_{\mathrm{pw}\mathcal{C}^\infty}$$

and x(0-) uniquely determines x.

9 Impulse-freeness of switched DAEs

Question: When are all solutions of homogenous (swDAE) $E_{\sigma}\dot{x} = A_{\sigma}x$ impulse free? (jumps are OK)

Lemma (Sufficient conditions).

• (E_p, A_p) all have index one (i.e. $N_p = 0$ in QWF) \Rightarrow (swDAE) impulse free

Stephan Trenn, TU Kaiserslautern

• all consistency spaces of (E_p, A_p) coincide (i.e. Wong limits \mathcal{V}_p^* are identical) \Rightarrow (swDAE) impulse free

Proof:

• Index-1-case: Consider nilpotent DAE-ITP:

$$(N\dot{w})_{[0,\infty)} = w_{[0,\infty)}$$

$$\Rightarrow 0 = w_{[0,\infty)}$$

$$\Rightarrow w[0] := w_{[0,0]} = 0$$

Hence an inconsistent initial value does not induce Dirac-impulse

- Same consistency space for all modes
 - \Rightarrow no inconsistent initial values at switch
 - \Rightarrow no jumps and no Dirac-impulse

Theorem. The switched DAE $E_{\sigma}\dot{x} = A_{\sigma}x$ is impulse free $\forall \sigma \in \Sigma_0$

$$\Leftrightarrow \quad E_q(I - \Pi_q)\Pi_p = 0 \quad \forall p, q \in \{1, \dots, N\}$$

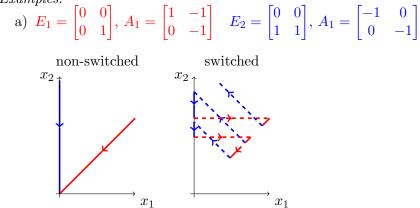
where $\Pi_p := \Pi_{(E_p, A_p)}, p \in \{1, \ldots, N\}$ is the consistency projector.

Remarks.

- a) Index $1 \Leftrightarrow E_p(I \Pi_p) = 0 \ \forall p$
- b) Consistency spaces equal $\Leftrightarrow (I \Pi_q)\Pi_p = 0 \ \forall p,q$

10 Stability of switched DAEs

Examples.



 \rightarrow jumps destabilize

b) (E_1, A_1) as above, $E_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $A_1 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

non-switched behavior exactly the same as above, but switched behavior now stable:

 x_2