IF YOU HAVE ANY QUESTIONS CONCERNING THIS MATERIAL (IN PARTICULAR, SPECIFIC POINTERS TO LITERATURE), PLEASE DON'T HESITATE TO CONTACT ME VIA EMAIL: trenn@mathematik.uni-kl.de

4 Equivalence and Quasi-canonical forms

Fact 1: For any invertible matrix $S \in \mathbb{R}^{m \times m}$:

$$(x, u)$$
 solves $E\dot{x} = Ax + Bu \Leftrightarrow (x, u)$ solves $SE\dot{x} = SAx + SBu$

Fact 2: For coordinate transformation $x = Tz, T \in \mathbb{R}^{n \times n}$ invertible:

$$(x, u)$$
 solves $E\dot{x} = Ax + Bu \iff (z, u) := (T^{-1}x, u)$ solves $ET\dot{z} = ATz + Bu$

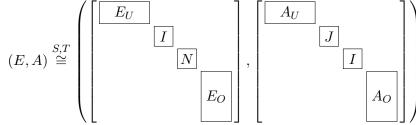
Together:

$$(x, u)$$
 solves $E\dot{x} = Ax + Bu \iff (z, u) := (T^{-1}x, u)$ solves $SET\dot{z} = SATz + SBu$

Definition. $(E_1, A_1), (E_2, A_2)$ are called *equivalent* : $\Leftrightarrow (E_2, A_2) = (SE_1T, SA_1T)$ short:

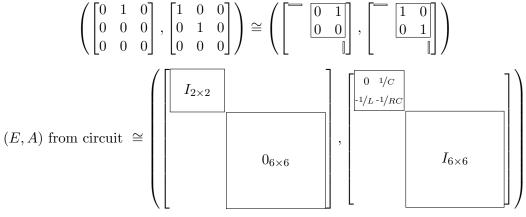
$$(E_1, A_1) \cong (E_2, A_2)$$

Theorem (Quasi-Kronecker Form). For any $E, A \in \mathbb{R}^{\ell \times m}$, \exists invertible $S \in \mathbb{R}^{\ell \times \ell}$ and invertible $T \in \mathbb{R}^{n \times n}$:



where (E_U, A_U) consists of underdetermined blocks on the diagonal, N is nilpotent, and (E_O, A_O) consists of overdetermined diagonal bolcks

Remark: 0×1 under determined blocks and 1×0 overdetermined blocks are possible Example:



Corollary. $E\dot{x} = Ax + f$ has solution x for any sufficiently smooth f and each solution x is uniquely determined by x(0) and f

$$\stackrel{\Leftrightarrow}{(E,A)} \cong \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right), \ N \ nilpotent \quad \boxed{Quasi-Weierstrass-Form \ (QWF)}$$

(E, A) is then called **regular** (Note: (E, A) regular $\Leftrightarrow \det(sE - A)$ is not the zero polynomial)

STEPHAN TRENN, TU KAISERSLAUTERN

5 Wong sequences

Definition. Let $E, A \in \mathbb{R}^{m \times n}$. The corresponding Wong sequences of the pair (E, A) are:

$$\mathcal{V}_0 := \mathbb{R}^n, \qquad \mathcal{V}_{i+1} := A^{-1}(E\mathcal{V}_i), \qquad i = 0, 1, 2, 3, \dots$$
$$\mathcal{W}_0 := \{0\}, \qquad \mathcal{W}_{j+1} := E^{-1}A(\mathcal{W}_j), \qquad i = 0, 1, 2, 3, \dots$$

Note: $M^{-1}\mathcal{S} := \{ x \mid Mx \in \mathcal{S} \}$ and $M\mathcal{S} := \{ Mx \mid x \in \mathcal{S} \}$

Clearly, $\exists i^*, j^* \in \mathbb{N}$

$$\mathcal{V}_0 \supset \mathcal{V}_1 \supset \ldots \supset \mathcal{V}_{i^*} = \mathcal{V}_{i^*+1} = \mathcal{V}_{i^*+2} = \ldots$$
$$\mathcal{W}_0 \subset \mathcal{W}_1 \subset \ldots \subset \mathcal{W}_{j^*} = \mathcal{W}_{j^*+1} = \mathcal{W}_{j^*+2} = \ldots$$

Wong limits:

$$\mathcal{V}^* := igcap_{i \in \mathbb{N}} \mathcal{V}_i = \mathcal{V}_{i^*}$$
 $\mathcal{W}^* = igcup_{i \in \mathbb{N}} \mathcal{W}_i = \mathcal{W}_{j^*}$

Theorem. The following statements are equivalent for square $E, A \in \mathbb{R}^{n \times n}$:

- (i) (E, A) is regular
- (ii) $\mathcal{V}^* \oplus \mathcal{W}^* = \mathbb{R}^n$
- (iii) $E\mathcal{V}^* \oplus A\mathcal{W}^* = \mathbb{R}^n$

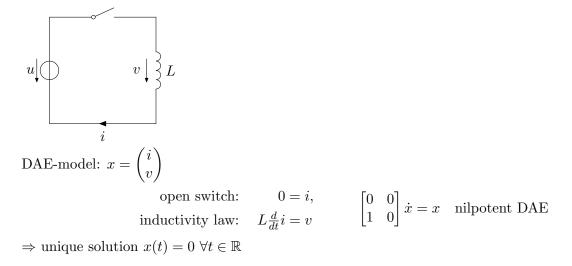
In particular, with $imV = \mathcal{V}^*$, $imW = \mathcal{W}^*$

$$(E, A)$$
 regular \Rightarrow $T := [V, W]$ and $S := [EV, AW]^{-1}$ invertible

and S, T yield QWF:

$$(SET, SAT) = \left(\begin{bmatrix} I & \\ & N \end{bmatrix}, \begin{bmatrix} J & \\ & I \end{bmatrix} \right), N \text{ nilpotent}$$

6 Inconsistent initial values: Motivating example

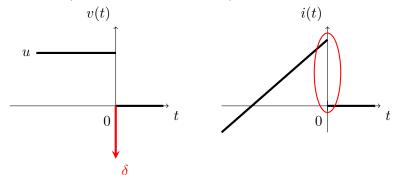


Now assume switch was opened at t = 0, i.e. DAE-model is only valid on $[0, \infty)$. Different DAE-model for t < 0:

closed switch:
$$0 = v - u$$
, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} x + \begin{bmatrix} -1 \\ 0 \end{bmatrix} u$
inductivity law: $L\frac{d}{dt}i = v$

Stephan Trenn, TU Kaiserslautern

Solution (assume constant input u):



Observations:

- $x(0-) = \begin{bmatrix} i(0-) \\ v(0-) \end{bmatrix} \neq 0$ inconsistent for $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \dot{x} = x$
- unique jump from x(0-) to x(0+) (consistent)
- derivative of jump = Dirac impulse appears in solution