If you have any questions concerning this material (in particular, specific pointers to LITERATURE), PLEASE DON'T HESITATE TO CONTACT ME VIA EMAIL: trenn@mathematik.uni-kl.de

4 Equivalence and Quasi-canonical forms

Fact 1: For any invertible matrix $S \in \mathbb{R}^{m \times m}$:

$$
(x, u) \text { solves } E \dot{x}=A x+B u \Leftrightarrow(x, u) \text { solves } S E \dot{x}=S A x+S B u
$$

Fact 2: For coordinate transformation $x=T z, T \in \mathbb{R}^{n \times n}$ invertible:

$$
(x, u) \text { solves } E \dot{x}=A x+B u \Leftrightarrow(z, u):=\left(T^{-1} x, u\right) \text { solves } E T \dot{z}=A T z+B u
$$

Together:

$$
(x, u) \text { solves } E \dot{x}=A x+B u \Leftrightarrow(z, u):=\left(T^{-1} x, u\right) \text { solves } S E T \dot{z}=S A T z+S B u
$$

Definition. $\left(E_{1}, A_{1}\right),\left(E_{2}, A_{2}\right)$ are called equivalent $: \Leftrightarrow\left(E_{2}, A_{2}\right)=\left(S E_{1} T, S A_{1} T\right)$ short:

$$
\left(E_{1}, A_{1}\right) \cong\left(E_{2}, A_{2}\right)
$$

Theorem (Quasi-Kronecker Form). For any $E, A \in \mathbb{R}^{\ell \times m}, \exists$ invertible $S \in \mathbb{R}^{\ell \times \ell}$ and invertible $T \in \mathbb{R}^{n \times n}$:

where $\left(E_{U}, A_{U}\right)$ consists of underdetermined blocks on the diagonal, N is nilpotent, and $\left(E_{O}, A_{O}\right)$ consists of overdetermined diagonal bolcks

Remark: 0×1 underdetermined blocks and 1×0 overdetermined blocks are possible Example:

$$
\begin{aligned}
& \left(\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\right) \cong\left(\left[\begin{array}{lll}
\boxed{0} & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{lll}
\left.\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & \\
& \\
& \\
\hline
\end{array}\right]\right)
\end{array}\right]\right.
\end{aligned}
$$

Corollary. $E \dot{x}=A x+f$ has solution x for any sufficiently smooth f and each solution x is uniquely determined by $x(0)$ and f
\Leftrightarrow
$(E, A) \cong\left(\left[\begin{array}{cc}I & 0 \\ 0 & N\end{array}\right],\left[\begin{array}{cc}J & 0 \\ 0 & I\end{array}\right]\right), N$ nilpotent \quad Quasi-Weierstrass-Form (QWF)
(E, A) is then called regular (Note: (E, A) regular $\Leftrightarrow \operatorname{det}(s E-A)$ is not the zero polynomial)

5 Wong sequences

Definition. Let $E, A \in \mathbb{R}^{m \times n}$. The corresponding Wong sequences of the pair (E, A) are:

$$
\begin{aligned}
\mathcal{V}_{0} & :=\mathbb{R}^{n}, & \mathcal{V}_{i+1} & :=A^{-1}\left(E \mathcal{V}_{i}\right), & & i=0,1,2,3, \ldots \\
\mathcal{W}_{0} & :=\{0\}, & \mathcal{W}_{j+1} & :=E^{-1} A\left(\mathcal{W}_{j}\right), & & i=0,1,2,3, \ldots
\end{aligned}
$$

Note: $M^{-1} \mathcal{S}:=\{x \mid M x \in \mathcal{S}\}$ and $M \mathcal{S}:=\{M x \mid x \in \mathcal{S}\}$
Clearly, $\exists i^{*}, j^{*} \in \mathbb{N}$

$$
\begin{aligned}
& \mathcal{V}_{0} \supset \mathcal{V}_{1} \supset \ldots \supset \mathcal{V}_{i^{*}}=\mathcal{V}_{i^{*}+1}=\mathcal{V}_{i^{*}+2}=\ldots \\
& \mathcal{W}_{0} \subset \mathcal{W}_{1} \subset \ldots \subset \mathcal{W}_{j^{*}}=\mathcal{W}_{j^{*}+1}=\mathcal{W}_{j^{*}+2}=\ldots
\end{aligned}
$$

Wong limits:

$$
\mathcal{V}^{*}:=\bigcap_{i \in \mathbb{N}} \mathcal{V}_{i}=\mathcal{V}_{i^{*}}
$$

$$
\mathcal{W}^{*}=\bigcup_{i \in \mathbb{N}} \mathcal{W}_{i}=\mathcal{W}_{j^{*}}
$$

Theorem. The following statements are equivalent for square $E, A \in \mathbb{R}^{n \times n}$:
(i) (E, A) is regular
(ii) $\mathcal{V}^{*} \oplus \mathcal{W}^{*}=\mathbb{R}^{n}$
(iii) $E \mathcal{V}^{*} \oplus A \mathcal{W}^{*}=\mathbb{R}^{n}$

In particular, with $\mathrm{im} V=\mathcal{V}^{*}, \mathrm{im} W=\mathcal{W}^{*}$

$$
(E, A) \text { regular } \Rightarrow T:=[V, W] \text { and } S:=[E V, A W]^{-1} \text { invertible }
$$

and S, T yield $Q W F$:

$$
(S E T, S A T)=\left(\left[\begin{array}{ll}
I & \\
& N
\end{array}\right],\left[\begin{array}{ll}
J & \\
& I
\end{array}\right]\right), N \text { nilpotent }
$$

6 Inconsistent initial values: Motivating example

DAE-model: $x=\binom{i}{v}$

$$
\begin{aligned}
\text { open switch: } & 0 & =i, \\
\text { inductivity law: } & L \frac{d}{d t} i & =v
\end{aligned} \quad\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \dot{x}=x \quad \text { nilpotent DAE }
$$

\Rightarrow unique solution $x(t)=0 \forall t \in \mathbb{R}$

Now assume switch was opened at $t=0$, i.e. DAE-model is only valid on $[0, \infty)$.
Different DAE-model for $t<0$:
$\begin{array}{rlrl}\text { closed switch: } & & 0 & =v-u, \\ \text { inductivity law: } & L \frac{d}{d t} i & =v\end{array} \quad\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right] \dot{x}=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right] x+\left[\begin{array}{c}-1 \\ 0\end{array}\right] u$

Solution (assume constant input u):

Observations:

- $x(0-)=\left[\begin{array}{l}i(0-) \\ v(0-)\end{array}\right] \neq 0 \quad$ inconsistent for $\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right] \dot{x}=x$
- unique jump from $x(0-)$ to $x(0+)$ (consistent)
- derivative of jump $=$ Dirac impulse appears in solution

