IF You have any questions concerning this material (in Particular, specific pointers to LITERATURE), PLEASE DON'T HESITATE TO CONTACT ME VIA EMAIL: trenn@mathematik.uni-kl.de

1 Motivation: Modeling of electrical circuits

Basic elements:

- Resistors: $v_{R}(t)=R i_{R}(t)$
- Capacitor: $C \frac{d}{d t} v_{C}(t)=i_{C}(t)$
- Coil: $L \frac{d}{d t} i_{L}(t)=v_{L}(t)$
- Voltage source: $v_{S}(t)=u(t)$

All components have the same form:

$$
E \dot{x}=A x+B u \quad E, A \in \mathbb{R}^{\ell \times n}, B \in \mathbb{R}^{\ell \times m}
$$

- Resistor: $x=\binom{v_{R}}{i_{R}}, E=E_{R}:=[0,0], A=A_{R}:=[-1, R], B=[]$
- Capacitor: $x=\binom{v_{C}}{i_{C}}, E=E_{C}:=[C, 0], A=A_{C}:=[0,1], B=[]$
- Inductor: $x=\binom{v_{C}}{i_{C}}, E=E_{L}:=[0, L], A=A_{L}:=[1,0], B=[]$
- Voltage source $x=\binom{v_{S}}{i_{S}}, E=E_{S}:=[0,0], A_{S}:=[-1,0], B=[1]$

Connecting components: Component equations remain unchanged! + Kirchhoff's voltage law:

$$
v_{R}+v_{C}=0
$$

Results again in $E \dot{x}=A x+B u$ with $x=\left(v_{R}, i_{R}, v_{C}, i_{C}\right)$ and

$$
\begin{aligned}
& E=E_{R C}:=\begin{array}{|cc}
\boxed{E_{R}} & \\
& \left.\begin{array}{|c}
E_{C} \\
0
\end{array}\right] \\
A=A_{R C}:=\left[\begin{array}{|cc|}
\hline A_{R} & \\
1 & -1 \\
\hline
\end{array}\right.
\end{array} . \begin{array}{cc}
A_{C} \\
\hline
\end{array}
\end{aligned}
$$

Connecting the inductor adds additional constraint:

$$
i_{L}=i_{R}+i_{C}, \quad \text { external current }=i_{L}, \text { external voltage }=v_{L}+v_{R}
$$

resulting in $E \dot{x}=A x+B u$ with $x=\left(v_{R}, i_{R}, v_{C}, i_{C}, v_{L}, i_{L}\right)$ given by

$$
E=\left[\begin{array}{cc}
\boxed{E_{R C}} & \\
& \left.\begin{array}{r}
E_{L} \\
\hline
\end{array}\right], \quad A=\left[\begin{array}{|cc}
\begin{array}{|cc}
A_{R C} \\
-1 & -1
\end{array} & \\
& \\
& \\
& \\
& \\
\hline
\end{array}\right], \quad B=\left[\begin{array}{l}
A_{L} \\
\hline
\end{array}\right]
\end{array}\right.
$$

Putting all together results in square DAE $E \dot{x}=A x+B u$ with $x=\left(v_{R}, i_{R}, v_{C}, i_{C}, v_{L}, i_{L}, v_{S}, i_{S}\right)$ and

$$
E=\left[\begin{array}{lllllllll}
0 & 0 & & & & & & \\
& & C & 0 & & & & & \\
& & & 0 & & & & \\
& & & & 0 & L & & \\
& & & & & 0 & & \\
& & & & & & 0 & 0 \\
& & & & & & & 0 \\
& & & & & & & 0
\end{array}\right], \quad A=\left[\begin{array}{llllllll}
-1 & R & & & & & & \\
& & 0 & 1 & & & & \\
1 & & -1 & & & & & \\
& & & & 1 & 0 & & \\
& -1 & & -1 & & 1 & & \\
& & & & & & -1 & 0 \\
& & & & & & -1 & \\
-1 & & & & -1 & & 1 & 1
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

2 DAEs: Differences to ODEs

Recall properties of ODEs $\quad \dot{x}=A x+f$

- Initial values: arbitrary
- Solution uniquely determined by f and $x(0)$
- No inhomogeneity constraints

DAE example:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \dot{x}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] x+\left(\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right) } \\
\dot{x}_{2} & =x_{1}+f_{1} \longrightarrow x_{1}=-f_{1}-\dot{f}_{2} \\
0 & =x_{2}+f_{2} \longrightarrow x_{2}=-f_{2} \\
0 & =f_{3}
\end{aligned}
$$

no restriction on x_{3}

Observations:

- For fixed inhomogeneity, initial values cannot be chosen arbitrarily $\left(x_{1}(0)=-f_{1}(0)-\dot{f}_{2}(0)\right.$, $\left.x_{2}(0)=f_{2}(0)\right)$
- For fixed inhomogeneity, solution not uniquely determined by initial value (x_{3} free)
- Inhomogeneity constraints
- structural restrictions ($f_{3}=0$)
- differentiability restrictions (\dot{f}_{2} must be well defined)

3 Special DAE-cases

a) $\mathrm{ODEs} \checkmark$
b) nilpotent DAEs:

$$
\begin{gathered}
{\left[\begin{array}{cccc}
0 & & & \\
1 & \ddots & & \\
& \ddots & \ddots & \\
& & 1 & 0
\end{array}\right] \dot{x}=x+f} \\
\Leftrightarrow \quad 0=x_{1}+f_{1} \\
\longrightarrow
\end{gathered} \begin{aligned}
& x_{1}=-f_{1} \\
& \dot{x}_{1}=x_{2}+f_{2} \\
& \dot{x}_{2}
\end{aligned}=x_{3}+f_{3} \quad \longrightarrow \quad x_{2}=-f_{2}-\dot{f}_{1} .
$$

In general:

$$
\begin{aligned}
& N \dot{x}=x+f \quad \text { with } N \text { nilpotent, i.e. } N^{n}=0 \\
& \stackrel{N d}{\Rightarrow d t} N^{2} \ddot{x}=N \dot{x}+N \dot{f}=x+f+N \dot{f} \\
& \stackrel{N d}{\Rightarrow d t} N^{3} \dddot{x}=N^{2} \ddot{x}+N^{2} \ddot{f}=x+f+N \dot{f}+N^{2} \ddot{f} \\
& \vdots \\
& \stackrel{N d}{\Rightarrow} \underbrace{N^{n} x^{(n)}}_{=0}=x+\sum_{i=0}^{n-1} N^{i} f^{(i)} \\
& \Rightarrow x=-\sum_{i=0}^{n-1} N^{i} f^{(i)}
\end{aligned}
$$

is unique solution of $N \dot{x}=x+f$

- Initial values: fixed by inhomogeneity
- Solution uniquely determined by f
- Inhomogeneity constraints:
- no structural constraints
- differentiability constraints: $\sum_{i=0}^{n-1} N^{i} f^{(i)}$ needs to be well defined
c) underdetermined DAEs

$$
\begin{aligned}
{ }_{n-1} & {\left[\begin{array}{cccc}
1 & 0 & & \\
& \ddots & \ddots & \\
& & 1 & 0
\end{array}\right] \dot{x}=\left[\begin{array}{cccc}
0 & 1 & & \\
& \ddots & \ddots & \\
& & 0 & 1
\end{array}\right] x+f } \\
& \Leftrightarrow\left(\begin{array}{c}
\dot{x}_{1} \\
\vdots \\
\dot{x}_{n-1}
\end{array}\right)=\left[\begin{array}{llll}
0 & 1 & & \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
& \Leftrightarrow \text { ODE with additional "input" } x_{n}
\end{array}\right. \\
&
\end{aligned}
$$

- Initial values: arbitrary
- Solution not uniquely determined by $x(0)$ and f
- Inhomogeneity constraints: none
d) overdetermined DAEs

$$
\begin{aligned}
{ }_{n+1} & {\left[\begin{array}{llll}
0 & & n & \\
1 & \ddots & & \\
& \ddots & \ddots & \\
& & \ddots & 0 \\
& & & 1
\end{array}\right] \dot{x}=\left[\begin{array}{llll}
1 & & & \\
0 & \ddots & & \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
& & & 0
\end{array}\right] x+f } \\
& \Leftrightarrow \underbrace{\left[\begin{array}{llll}
0 & & & \\
1 & \ddots & & \\
& \ddots & \ddots & \\
& & 1 & 0
\end{array}\right]}_{N} \dot{x}=x+\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right) \wedge \dot{x}_{n}=f_{n+1} \\
& \Leftrightarrow x=-\sum_{i=0}^{n-1} N^{i} f^{(i)} \wedge \underbrace{\dot{x}_{n}=-\sum_{i=1}^{n} f_{i}^{(n-i+1)} \stackrel{!}{=} f_{n+1}}_{\Leftrightarrow \sum_{i=1}^{n+1} f_{i}^{(n+1-i)}=0}
\end{aligned}
$$

- Initial valus: fixed by inhomogeneity
- Solution uniquely determined by f
- Inhomogeneity constraints
- structural constraint: $\sum_{i=1}^{n+1} f_{i}^{(n+1-i)}=0$
- differentiability constraint: $f_{i}^{(n+1-i)}$ needs to be well defined

We will see: There are no other cases!

