IF YOU HAVE ANY QUESTIONS CONCERNING THIS MATERIAL (IN PARTICULAR, SPECIFIC POINTERS TO LITERATURE), PLEASE DON'T HESITATE TO CONTACT ME VIA EMAIL: trenn@mathematik.uni-kl.de

3 Inconsistent initial values and distributional solutions

3.1 Motivating example

 $u \downarrow \bigcirc v \downarrow \rbrace L$ iDAE-model: $x = \begin{pmatrix} i \\ v \end{pmatrix}$ open switch: 0 = i, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \dot{x} = x$ nilpotent DAE
inductivity law: $L\frac{d}{dt}i = v$

 \Rightarrow unique solution $x(t) = 0 \ \forall t \in \mathbb{R}$

Now assume switch was opened at t = 0, i.e. DAE-model is only valid on $[0,\infty)$. Different DAE-model for t < 0:

closed switch:	0 = i,	[0	0]	[0	1]	$\left[-1\right]$
inductivity law:	$L\frac{d}{dt}i = v$	1	$0 \end{bmatrix} x =$	= [0	$1 \end{bmatrix} x +$	

Solution (assume constant input u):

Observations:

•
$$x(0-) = \begin{bmatrix} i(0-) \\ v(0-) \end{bmatrix} \neq 0$$
 inconsistent for $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \dot{x} = x$

- unique jump from x(0-) to x(0+) (consistent)
- derivative of jump = *Dirac impulse* appears in solution

3.2 Consistency projector

Definition 1 (Initial trajectory problem (ITP)). Given pase trajectory $x^0 : (-\infty, 0) \to \mathbb{R}^n$ find $x : \mathbb{R} \to \mathbb{R}^n$ such that

$$\begin{array}{c} x|_{(-\infty,0)} = x^{0} \\ (E\dot{x})|_{[0,\infty)} = (Ax+f)|_{[0,\infty)} \end{array} \right\}$$
(ITP)

"Theorem": Consider (ITP) with regular (E,A) and f = 0. Choose S,T invertible such that

$$(SET,SAT) = \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right)$$

Then any solution x of (ITP) satisfies

$$x(0+) = \Pi_{(E,A)} x(0-)$$

where

$$\Pi_{(E,A)} := T \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} T^{-1}$$

is the consistency projector. **Proof:** Let $\begin{pmatrix} v \\ w \end{pmatrix} = T^{-1}x$ and $\begin{pmatrix} v^0 \\ w^0 \end{pmatrix} = T^{-1}x^0$, then x solves (ITP) with $f = 0 \iff \begin{pmatrix} v \\ w \end{pmatrix}$ solves

$$\begin{array}{c} v|_{(-\infty,0)} = v^{0} \\ \dot{v}_{[0,\infty)} = (Jv)_{[0,\infty)} \end{array} \right\}$$
(*)

and

$$\begin{array}{c} w|_{(-\infty,0)} = w^{0} \\ (N\dot{w})_{[0,\infty)} = w_{[0,\infty)} \end{array} \right\}$$
 (**)

Since (*) is an ODE on $[0,\infty)$ we have

$$v(t) = e^{Jt}v(0-) \quad \forall t \ge 0$$

In particular, |v(0+) = v(0-)| From Lecture 1 we know that (**) considered on $(0,\infty)$ implies

$$w(t) = 0 \quad \forall t > 0$$

In particular, w(0+) = 0 (independently of w(0-))

Altogether we have

$$\begin{pmatrix} v(0+)\\ w(0+) \end{pmatrix} = \begin{pmatrix} v(0+)\\ 0 \end{pmatrix} = \begin{bmatrix} I & 0\\ 0 & 0 \end{bmatrix} \begin{pmatrix} v(0-)\\ w(0-) \end{pmatrix}$$

hence

$$x(0+) = T \begin{pmatrix} v(0+) \\ w(0+) \end{pmatrix} = T \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} v(0-) \\ w(0-) \end{pmatrix} = T \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} T^{-1}x(0-) = \Pi_{(E,A)}x(0-)$$

Remarks 1.

a) $\Pi_{(E,A)}$ does not depend on the specific choice of S and T: Assume

$$(S_1ET_1, S_1AT_1) = \left(\begin{bmatrix} I & \\ & N_1 \end{bmatrix}, \begin{bmatrix} J_1 & \\ & I \end{bmatrix} \right) \quad \text{and} \quad (S_2ET_2, S_2AT_2) = \left(\begin{bmatrix} I & \\ & N_2 \end{bmatrix}, \begin{bmatrix} J_2 & \\ & I \end{bmatrix} \right)$$

From the exercise we know $T_1 = T_2 \begin{bmatrix} P \\ Q \end{bmatrix}$ for some invertible P, Q, hence

$$T_1 \begin{bmatrix} I \\ 0 \end{bmatrix} T_1^{-1} = T_2 \begin{bmatrix} P \\ Q \end{bmatrix} \begin{bmatrix} I \\ 0 \end{bmatrix} \begin{bmatrix} P^{-1} \\ Q_1^{-1} T_2^{-1} \end{bmatrix} = T_2 \begin{bmatrix} I \\ 0 \end{bmatrix} T_2^{-1}$$

b) At this point we haven't actually shown that (ITP) has a solution!

STEPHAN TRENN, TU KAISERSLAUTERN

3.3 Basics of distribution theory

Definition 2 (Test functions).

Lemma 1 (Topology on \mathcal{C}_0^{∞}). There is a topology (family of "open" sets) on \mathcal{C}_0^{∞} such that for any sequence $(\varphi_n)_{n\in\mathbb{N}}$ in \mathcal{C}_0^{∞} it holds

$$\varphi_n \stackrel{in \ C_0^{\infty}}{\longrightarrow} 0 \quad as \ n \to \infty$$

 \Leftrightarrow

1) $\exists \ compact \ K \subseteq \mathbb{R}$: supp $\varphi_n \subseteq K \ \forall n \ and$

$$\begin{array}{cccc} 2) & \underbrace{\varphi_n^{(i)} & \underset{m \to \infty}{\underset{i.e.}{\underbrace{\|\varphi_n^{(i)}\|_{\infty}}}} & 0 \\ & i.e. & \underbrace{\|\varphi_n^{(i)}\|_{\infty}}_{x \in \mathbb{R}} & \underset{m \to \infty}{\overset{in \ \mathbb{R}}{\longrightarrow}} & 0 \\ & \vdots = \sup_{x \in \mathbb{R}} |\varphi_n^{(i)}(x)| \end{array}$$

Definition 3 (Distributions).

 $\mathbb{D} := \{ D : \mathcal{C}_0^{\infty} \to \mathbb{R} \mid D \text{ linear and continuous } \}$

Corollary 1 (Continuity test). Let $D : \mathcal{C}_0^{\infty} \to \mathbb{R}$ be linear. Then $D \in \mathbb{D} \Leftrightarrow \forall (\varphi_n)_{n \in \mathbb{N}}$ in \mathcal{C}_0^{∞} with

1) $\exists K \text{ compact: supp } \varphi_n \subseteq K$

2)
$$\varphi_n^{(i)} \xrightarrow{uniformly} 0 \ \forall i \in \mathbb{N}$$

it holds

$$D(\varphi_n) \xrightarrow{in \mathbb{R}} 0 \quad as \quad n \to \infty$$

Lemma 2 (Generalized functions). $\mathcal{L}^1_{\text{loc}} := \left\{ f : \mathbb{R} \to \mathbb{R} \mid \forall \text{ compact } K : \int_K |f| < \infty \right\}$

$$\forall f \in \mathcal{L}^1_{\text{loc}} \ \forall \varphi \in \mathcal{C}^\infty_0 : \quad f_{\mathbb{D}}(\varphi) := \int_{\mathbb{R}} f \cdot \varphi$$

Then

$$f_{\mathbb{D}} \in \mathbb{D}$$

Furthermore, for any $f_1, f_2 \in \mathcal{L}^1_{\text{loc}}$:

$$f_{1\mathbb{D}} = f_{2\mathbb{D}} \quad \Leftrightarrow \quad f_1 = f_2 \ almost \ everywhere$$

Definition 4 (Dirac impulse).

$$\delta(\varphi) := \varphi(0) \quad \forall \varphi \in \mathcal{C}_0^\infty$$

STEPHAN TRENN, TU KAISERSLAUTERN

Lemma 3. For $D \in \mathbb{D}$ let

$$D'(\varphi) := -D(\varphi')$$

then

1)
$$D' \in \mathbb{D}$$

2) If $f \in \mathcal{C}^1$: $(f_{\mathbb{D}})' = (f')_{\mathbb{D}}$
3) For $\mathbb{1}_{[0,\infty)}(t) := \begin{cases} 1, t \in [0,\infty) \\ 0t \in (-\infty,0) \end{cases}$ we have
 $\delta = \left(\mathbb{1}_{[0,\infty]}\right)'$

3.4 Distributional solutions

$$E\dot{X} = AX + f_{\mathbb{D}} \quad X \in \mathbb{D}^n, \ f \in \mathcal{L}^1_{\text{loc}}$$

Lemma 4. Let (E,A) be regular, then

1) $\forall f \in \mathcal{L}^{1}_{\text{loc}} \exists X \in \mathbb{D}^{n} \text{ such that } E\dot{X} = AX + f_{\mathbb{D}}$ 2) If $f \in \mathcal{C}^{\infty}$ then $\forall X \in \mathbb{D}^{n}$ with $E\dot{X} = AX + f_{\mathbb{D}} \exists x \in (\mathcal{C}^{\infty})^{n}$: $\boxed{X = x_{\mathbb{D}}}$

ITP? Need restrictions to intervals!

Theorem 1. It is not possible to define restriction for general distributions. **Proof:** For $d_n := \frac{(-1)^n}{n+1}$ let

$$D = \sum_{i=0}^{\infty} d_n \delta_{d_n} \stackrel{!}{\in} \mathbb{D}$$

where $\delta_t(\varphi) = \varphi(t)$. $\begin{array}{c|c} -1/2 & -1/4 & & \uparrow \\ \hline & & & \uparrow \\ \hline & & & \uparrow \\ \hline & & & \uparrow \\ 1/5 & 1/3 & & 1 \end{array}$

Then $D_{[0,\infty)} = \sum_{k=0}^{\infty} d_{2k} \delta_{d_{2k}}$. For any $\varphi \in \mathcal{C}_0^{\infty}$ with $\varphi(t) = 1$ on [0,1] we have

$$D_{[0,\infty)}(\varphi) = \sum_{k=0}^{\infty} d_{2k} \underbrace{\delta_{d_{2k}}(\varphi)}_{=1} = \sum_{k=0}^{\infty} \frac{1}{2k+1} \to \infty \quad \checkmark$$

Way out: Consider smaller space of piecewiese smooth distributions

$$\mathbb{D}_{\mathrm{pw}\mathcal{C}^{\infty}} := \left\{ \begin{array}{l} D = f_{\mathbb{D}} + \sum_{t \in T} D_t \end{array} \middle| \begin{array}{l} f \in \mathcal{C}^{\infty}_{\mathrm{pw}}, T \subseteq \mathbb{R} \text{ discrete}, \\ \forall t \in T : D_t \in \mathrm{span}\{\delta_t, \delta'_t, \delta''_t, \ldots\} \end{array} \right\}$$

where $f \in \mathcal{C}_{pw}^{\infty}$: $\Leftrightarrow \exists \alpha_i \in \mathcal{C}^{\infty}, i \in \mathbb{Z}, \exists \{\dots, t_{-2}, t_{-1}, t_0, t_1, t_2 \dots\}$ ordered: $f = \sum_{i \in \mathbb{Z}} (\alpha_i)_{[t_i, t_{i+1})}$

Lemma 5.

- $D \in \mathbb{D}_{\mathrm{pw}\mathcal{C}^{\infty}} \quad \Rightarrow \quad D' \in \mathbb{D}_{\mathrm{pw}\mathcal{C}^{\infty}}$
- $\forall f \in \mathcal{C}_{pw}^{\infty}$: $f_{\mathbb{D}} \in \mathbb{D}_{pw\mathcal{C}^{\infty}}$

Stephan Trenn, TU Kaiserslautern

• \forall intervals $M \subseteq \mathbb{R} \ \forall D = f_{\mathbb{D}} + \sum_{t \in T} D_t \in \mathbb{D}_{pw\mathcal{C}^{\infty}}$:

$$D_M := (f_M)_{\mathbb{D}} + \sum_{t \in T \cap M} D_t \in \mathbb{D}_{\mathrm{pw}\mathcal{C}^{\infty}}$$

well defined restriction.

Theorem 2. Let (E,A) be regular, $\forall x^0 \in \mathbb{D}^n_{pw\mathcal{C}^\infty} \ \forall f \in \mathbb{D}^m_{pw\mathcal{C}^\infty} \ \exists !x \in \mathbb{D}^n_{pw\mathcal{C}^\infty} :$

$$(x^{0})_{(-\infty,0)} = x_{(-\infty,0)}$$
$$(E\dot{x})_{[0,\infty)} = (Ax + f)_{[0,\infty)}$$