IF YOU HAVE ANY QUESTIONS CONCERNING THIS MATERIAL (IN PARTICULAR, SPECIFIC POINTERS TO LITERATURE), PLEASE DON'T HESITATE TO CONTACT ME VIA EMAIL: trenn@mathematik.uni-kl.de

10 Switched DAEs

10.1 Motivation and solutions

Recall example from Lecture 3:

Switch → Different DAE models (=modes) depending on (time-varying) position of switch

Switching signal $\sigma: \mathbb{R} \to \{1, \dots, N\}$ picks mode number $\sigma(t)$ at each time $t \in \mathbb{R}$:

$$E_{\sigma(t)}\dot{x}(t) = A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t)$$
$$y(t) = C_{\sigma(t)}x(t) + D_{\sigma(t)}u(t)$$

or short

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

$$y = C_{\sigma}x + D_{\sigma}u$$
(swDAE)

Each mode might have different consistency spaces

- ⇒ inconsistent initial values at each switch
- \Rightarrow distributional solutions

In (swDAE) multiplication of piecewise-constant function with distribution appears.

Lemma 1 (Multiplication of distributions).

• Let $\alpha \in \mathcal{C}^{\infty}$ and $D \in \mathbb{D}$, then $\alpha \cdot D \in \mathbb{D}$ where

$$(\alpha \cdot D)(\varphi) := D(\alpha \cdot \varphi)$$

• Let $\alpha = \sum_{i \in \mathbb{Z}} \alpha_{i[t_i, t_{i+1})} \in \mathcal{C}_{pw}^{\infty}$ and $D \in \mathbb{D}_{pw\mathcal{C}^{\infty}}$, then $\alpha \cdot D \in \mathbb{D}_{pw\mathcal{C}^{\infty}}$ where

$$\alpha \cdot D := \sum_{i \in \mathbb{Z}} \alpha_i \cdot D_{[t_i, t_{i+1})},$$

in particular, $\mathbb{1}_{[0,\infty)} \cdot \delta = \delta$.

Remarks 1.

- a) It is not possible to define commutative multiplication F * G neither for general $F,G \in \mathbb{D}$ nor for $F,G \in \mathbb{D}_{\mathrm{pw}C^{\infty}}$ (\to Exercise)
- b) A noncommutative mutliplication $F \cdot G$ for $F,G \in \mathbb{D}_{pwC^{\infty}}$ can be defined, in particular,

$$\delta \cdot \delta = 0$$

(because
$$\delta \cdot \delta = \mathbb{1}'_{[0,\infty)} \cdot \delta = (\mathbb{1}_{[0,\infty)} \cdot \delta)' - \mathbb{1}_{[0,\infty)} \cdot \delta' = \delta' - \delta' = 0$$
)

STEPHAN TRENN, TU KAISERSLAUTERN

Corollary 1 (from Lecture 3). Let

$$\Sigma_0 := \left\{ \left. \sigma : \mathbb{R} \to \{1, \dots, N\} \; \right| \; \sigma \; \text{is piecewise constant and } \sigma \right|_{(-\infty, 0)} \; \text{is constant} \; \right\}.$$

Consider (swDAE) with regular $(E_p, A_p) \ \forall p \in \{1, \dots, N\}$. Then for all $u \in \mathbb{D}_{pwC^{\infty}}^m$ and all $\sigma \in \Sigma_0$ exists solution $x \in \mathbb{D}_{pwC^{\infty}}^n$ of (swDAE) and x(0-) uniquely determines x.

10.2 Impulse-freeness

Question: When are all solutions of homogenous (swDAE) $E_{\sigma}\dot{x} = A_{\sigma}x$ impulse free, i.e. $x[t] := x_{[t,t]} = 0 \ \forall t \in \mathbb{R}$? (jumps are OK)

Lemma 2 (Sufficient conditions).

- (E_p, A_p) all have index one (i.e. $N_p = 0$ in QWF) $\Rightarrow (swDAE)$ impulse free
- all consistency spaces of (E_p, A_p) coincide (i.e. Wong limits \mathcal{V}_p^* are identical) \Rightarrow (swDAE) impulse free

Proof:

• Index-1-case: Consider nilpotent DAE-ITP:

$$(N\dot{w})_{[0,\infty)} = w_{[0,\infty)}$$

$$\Rightarrow 0 = w_{[0,\infty)}$$

$$\Rightarrow w[0] = 0$$

Hence an inconsistent initial value does not induce Dirac-impulse

- Same consistency space for all modes
 - \Rightarrow no inconsistent initial values at switch
 - \Rightarrow no Dirac-impulse

Theorem 1. The switched DAE $E_{\sigma}\dot{x} = A_{\sigma}x$ is impulse free $\forall \sigma \in \Sigma_0$

$$\Leftrightarrow E_q(I - \Pi_q)\Pi_p = 0 \quad \forall p, q \in \{1, \dots, N\}$$

where $\Pi_p := \Pi_{(E_p, A_p)}, p \in \{1, \dots, N\}$ is the consistency projector.

Proof: It suffices to consider $\sigma = \underbrace{\begin{array}{c} 2 \\ 1 \\ 0 \end{array}}_{t}$

i.e. (swDAE) reads as

$$(E_1\dot{x})_{(-\infty,0)} = (A_1x)_{(-\infty,0)}(E_2\dot{x})_{[0,\infty)} = (A_2x)_{[0,\infty)} \tag{*}$$

Choose S_2, T_2 invertible such that $(S_2E_2T_2, S_2A_2T_2)$ is in QWF, then (*) is equivalent to

$$(\widetilde{E}_1 \dot{z})_{(-\infty,0)} = (\widetilde{A}_1 z)_{(-\infty,0)} \left(\begin{bmatrix} I & \\ & N \end{bmatrix} \dot{z} \right)_{[0,\infty)} = \left(\begin{bmatrix} J & \\ & I \end{bmatrix} z \right)_{[0,\infty)}$$

where $z = T_2^{-1}x$ and $(\widetilde{E}_1, \widetilde{A}_1) = (S_2E_1T_2, S_2A_1T_2)$. Note that $z(0-) = T_2^{-1}x(0-) \in T_2^{-1}\text{im}\Pi_1$. Let $z = \begin{pmatrix} v \\ w \end{pmatrix}$ then (*) is impulse free

 \Leftrightarrow ITP for $N\dot{w}=w$ is impulse free for all $w(0-)\in[0,I]T_2^{-1}\mathrm{im}\Pi_1$

Since $w[0] = -\sum_{i=0}^{n-2} N^{i+1} w(0-) \delta^{(i)}$ we have

$$(*) \text{ is impulse free} \quad \Leftrightarrow \quad N^{i+1}[0,I]T_2^{-1}\text{im}\Pi_1 \ \forall i \in \{0,1,\dots,n-2\}$$

$$\Leftrightarrow \quad N[0,I]T_2^{-1}\Pi_1 = 0$$

$$\Leftrightarrow \quad \begin{bmatrix} I \\ N \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix} T_2^{-1}\Pi_1 = 0$$

$$\Leftrightarrow \quad S_2^{-1} \begin{bmatrix} I \\ N \end{bmatrix} T_2^{-1}T_2 \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix} T_2^{-1}\Pi = 0$$

$$\Leftrightarrow \quad E_2(I - \Pi_2)\Pi_1 = 0$$

Remarks 2.

- a) Index $1 \Leftrightarrow E_p(I \Pi_p) = 0 \ \forall p$
- b) Consistency spaces equal $\Leftrightarrow (I \Pi_q)\Pi_p = 0 \ \forall p,q$

10.3 Stability

Definition 1. $E_{\sigma}\dot{x} = A_{\sigma}x$ is called (asymptotically) stable (for given σ) \Leftrightarrow

- 1) all solutions are *impulse free*
- 2) $x(t\pm) \to 0$ as $t \to \infty$

Question: When is $E_{\sigma}\dot{x} = A_{\sigma}x$ stable $\forall \sigma$?

Attention: Stability of each mode $E_p\dot{x}=A_px$ is necessary but not sufficient, ODE-example:

For switched DAEs jumps play also important role:

Examples 1.
a) $E_1 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $A_1 = \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix}$ $E_2 = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$, $A_1 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

 \rightarrow jumps destabilize

b) (E_1, A_1) as above, $E_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $A_1 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

non-switched behavior exactly the same as above, but switched behavior now stable:

Proposition 1. $E\dot{x} = Ax$ asymptotically stable for regular (E,A)

 \Leftrightarrow generalized Lyapunov equation

$$A^{\top}PE + E^{\top}PA = -Q \tag{*}$$

has solution (P,Q) with $P=P^{\top}>0$ (positiv definite) and $Q=Q^{\top}$ positiv definite on consistency space.

In particular, $E\dot{x} = Ax$ asymptotically stable

 $\Leftrightarrow \exists \ Lyapunov \ Function$

$$V(x) = (Ex)^{\top} PEx$$

where P is solution of (*) for some Q.

Note that

$$\frac{d}{dt}V(x(t)) = (Ex(t))^{\top}PE\dot{x}(t) + (E\dot{x}(t))^{\top}PEx(t)$$
$$= x(t)^{\top}E^{\top}PAx(t) + x(t)A^{\top}PEx(t)$$
$$= -x(t)Qx(t) < 0$$

Theorem 2. $E_{\sigma}\dot{x} = A_{\sigma}x$ is asymptotically stable $\forall \sigma$ if

- 1) $E_q(I \Pi_q)\Pi_p = 0 \ \forall p,q \ (impulse \ freeness)$
- 2) $\exists Lyapunov Function V_p(x) = (E_p x)^\top P_p E_p x \ \forall p \ (each \ mode \ asymptotically \ stable)$
- 3) $\forall p,q \in \{1,\ldots,N\} \forall x \in \text{im}\Pi_p$:

$$V_q(\Pi_q x) \le V_p(x) \tag{**}$$

Note that for all $x \in \Pi_p \cap \Pi_q$:

$$V_q(x) = V_q(\Pi_q x) \le V_p(x) = V_p(\Pi_p x) \le V_q(x)$$

- $\Rightarrow V_q(x) = V_p(x)$ on intersection of consistency space
- \Rightarrow (**) generalizes the well-known "common Lyapunov function" condition of switched ODEs.

Remark 3. Result also holds for nonlinear switched DAEs:

$$E_{\sigma}(x)\dot{x} = f_{\sigma}(x).$$