If you have any questions concerning this material (in particular, specific pointers to LITERATURE), PLEASE DON'T HESITATE TO CONTACT ME VIA EMAIL: trenn@mathematik.uni-kl.de

1 Solution Theory

1.1 Motivation: Modeling of electrical circuits

Basic components:

- Resistors: $v_{R}(t)=R i_{R}(t)$
- Capacitor: $C \frac{d}{d t} v_{C}(t)=i_{C}(t)$
- Coil: $L \frac{d}{d t} i_{L}(t)=v_{L}(t)$
- Voltage source: $v_{S}(t)=u(t)$

All components have the same form:

$$
E \dot{x}=A x+B u \quad E, A \in \mathbb{R}^{\ell \times n}, B \in \mathbb{R}^{\ell \times m}
$$

- Resistor: $x=\binom{v_{R}}{i_{R}}, E=[0,0], A=[-1, R], B=[]$
- Capacitor: $x=\binom{v_{C}}{i_{C}}, E=[C, 0], A=[0,1], B=[]$
- Inductor: $x=\binom{v_{C}}{i_{C}}, E=[0, L], A=[1,0], B=[]$
- Voltage source $x=\binom{v_{C}}{i_{C}}, E=[0,0], A=[-1,0], B=[1]$

Connecting components: Component equations remain unchanged!

+ Kirchhoffs laws:

$$
v_{R C}=v_{R}, \quad i_{R C}=i_{R}+i_{C}, \quad v_{R}+v_{C}=0
$$

Results again in $E \dot{x}=A x+B u$ with $x=\left(v_{R}, i_{R}, v_{C}, i_{C}, v_{R C}, i_{R C}\right)$ and

$$
E=\left[\begin{array}{llllll}
0 & 0 & & & & \\
& & C & 0 & & \\
& & & & 0 & \\
& & & & & 0
\end{array}\right], \quad A=\left[\begin{array}{cccccc}
-1 & R & & & & \\
& & 0 & 1 & & \\
1 & & & & -1 & \\
& -1 & & -1 & & 1 \\
1 & & 1 & & &
\end{array}\right]
$$

Altogether: $x=\left(v_{R}, i_{R}, v_{C}, i_{C}, v_{L}, i_{L}, v_{S}, i_{S}\right)$

$$
E=\left[\begin{array}{llllllll}
0 & 0 & & & & & & \\
& & C & 0 & & & & \\
& & & & 0 & L & & \\
& & & & & & 0 & 0 \\
& & & & & & 0 \\
& & & & & & 0 \\
& & & & & & 0 \\
& & & & & & 0
\end{array}\right], A=\left[\begin{array}{cccccccc}
-1 & R & & & & & \\
& & 0 & 1 & & & & \\
& & & & 1 & 0 & & \\
& & & & & & 1 & 0 \\
1 & & & & & & -1 & \\
-1 & & 1 & & & & & \\
& & & & & & -1 & \\
& 1 & & 1 & & 1
\end{array}\right], B=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

1.2 DAEs: What is different to ODEs

Example:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \dot{x}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] x+\left(\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right) } \\
\dot{x}_{2} & =x_{1}+f_{1} \longrightarrow x_{1}=-f_{1}-\dot{f}_{2} \\
0 & =x_{2}+f_{2} \longrightarrow x_{2}=-f_{2} \\
0 & =f_{3}
\end{aligned}
$$

no restriction on x_{3}

Observations:

- For fixed inhomogeneity, initial values cannot be chosen arbitrarily $\left(x_{1}(0)=-f_{1}(0)-\dot{f}_{2}(0)\right.$, $\left.x_{2}(0)=f_{2}(0)\right)$
- For fixed inhomogeneity, solution not uniquely determined by initial value (x_{3} free)
- Inhomogeneity not arbitrary
- structural restrictions $\left(f_{3}=0\right)$
- differentiability restrictions (\dot{f}_{2} must be well defined)

1.3 Special DAE-cases

a) ODEs:

$$
\dot{x}=A x+f
$$

- Initial values: arbitrary
- Solution uniquely determined by f and $x(0)$
- Inhomogeneity constraints
- no structural constraints
- no differentiability constraints
b) nilpotent DAEs:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
0 & & & \\
1 & \ddots & & \\
& \ddots & \ddots & \\
& & 1 & 0
\end{array}\right] \dot{x}=x+f } \\
\Leftrightarrow \quad 0 & =x_{1}+f_{1} \\
& \longrightarrow
\end{aligned} x_{1}=-f_{1} . \dot{x}_{1} .
$$

In general:

$$
\begin{aligned}
& N \dot{x}=x+f \quad \text { with } N \text { nilpotent, i.e. } N^{n}=0 \\
& \stackrel{N \frac{d}{d t}}{\Rightarrow} N^{2} \ddot{x}=N \dot{x}+N \dot{f}=x+f+N \dot{f} \\
& \stackrel{N d}{\Rightarrow d t} \cdots \stackrel{N \frac{d}{d t}}{\Rightarrow} 0=N^{n} x^{(n)}=x+\sum_{i=0}^{n-1} N^{i} f^{(i)} \\
& \Rightarrow x=-\sum_{i=0}^{n-1} N^{i} f^{(i)}
\end{aligned}
$$

is unique solution of $N \dot{x}=x+f$

- Initial values: fixed by inhomogeneity
- Solution uniquely determined by f
- Inhomogeneity constraints:
- no structural constraints
- differentiability constraints: $\left(N^{i} f\right)^{(i)}$ needs to be well defined
c) underdetermined DAEs

$$
\begin{aligned}
{ }_{n-1} & {\left[\begin{array}{cccc}
1 & 0 & & \\
& \ddots & \ddots & \\
& & 1 & 0
\end{array}\right] \dot{x}=\left[\begin{array}{cccc}
0 & 1 & & \\
& \ddots & \ddots & \\
& & 0 & 1
\end{array}\right] x+f } \\
& \Leftrightarrow\left(\begin{array}{c}
\dot{x}_{1} \\
\vdots \\
\dot{x}_{n-1}
\end{array}\right)=\left[\begin{array}{llll}
0 & 1 & & \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
& \Leftrightarrow \text { ODE with additional "input" } x_{n}
\end{array} \text { (} \begin{array}{c}
x_{1} \\
\vdots \\
x_{n-1}
\end{array}\right)+\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
x_{n}
\end{array}\right)+f \\
&
\end{aligned}
$$

- Initial values: arbitrary
- Solution not uniquely determined by $x(0)$ and f
- Inhomogeneity constraints: none
d) overdetermined DAEs

$$
\begin{aligned}
& n+1\left[\begin{array}{cccc}
0 & & & \\
1 & \ddots & & \\
& \ddots & \ddots & \\
& & \ddots & 0 \\
& & & 1
\end{array}\right] \dot{x}=\left[\begin{array}{llll}
1 & & & \\
0 & \ddots & & \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
& & & 0
\end{array}\right] x+f \\
& \Leftrightarrow \underbrace{\left[\begin{array}{cccc}
0 & & & \\
1 & \ddots & & \\
& \ddots & \ddots & \\
& & 1 & 0
\end{array}\right]}_{N} \dot{x}=x+\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right) \wedge \dot{x}_{n}=f_{n+1} \\
& \begin{aligned}
\Leftrightarrow x=-\sum_{i=0}^{n-1} N^{i} f^{(i)} \wedge \underbrace{\dot{x}_{n}}_{i=1}=-\sum_{i=1}^{n} f_{i}^{n-i+1} \stackrel{!}{=} f_{n+1} \\
\Leftrightarrow \sum_{i=1}^{n+1} f_{i}^{(n+1-i)}=0
\end{aligned}
\end{aligned}
$$

- Initial valus: fixed by inhomogeneity
- Solution uniquely determined by f
- Inhomogeneity constraints
- structural constraint: $\sum_{i=1}^{n+1} f_{i}^{(n+1-i)}=0$
- differentiability constraint: f_{i}^{n+1-i} needs to be well defined

We will see: There are no other cases!

1.4 Solution behavior, equivalence and normal forms

Solution behavior of $E \dot{x}=A x+f$

$$
\mathfrak{B}_{[E, A, I]}:=\left\{(x, f) \mid x \in \mathcal{C}^{1}\left(\mathbb{R} \rightarrow \mathbb{R}^{n}\right), f: \mathbb{R} \rightarrow \mathbb{R}^{m}, E \dot{x}=A x+f\right\}
$$

Fact 1: For any invertible matrix $S \in \mathbb{R}^{m \times m}$:

$$
(x, f) \in \mathfrak{B}_{[E, A, I]} \Leftrightarrow(x, S f) \in \mathfrak{B}_{[S E, S A, I]}
$$

Fact 2: For coordinate transformation $x=T z, T \in \mathbb{R}^{n \times n}$ invertible:

$$
(x, f) \in \mathfrak{B}_{[E, A, I]} \Leftrightarrow\left(T^{-1} x, f\right) \in \mathfrak{B}_{[E T, A T, I]}
$$

Together:

$$
(x, f) \in \mathfrak{B}_{[E, A, I]} \Leftrightarrow\left(T^{-1}, S f\right) \in \mathfrak{B}_{[S E T, S A T, I]}
$$

Definition 1. $\left(E_{1}, A_{1}\right),\left(E_{2}, A_{2}\right)$ are called equivalent
$: \Leftrightarrow\left(E_{2}, A_{2}\right)=\left(S E_{1} T, S A_{1} T\right)$
short:

$$
\left(E_{1}, A_{1}\right) \cong\left(E_{2}, A_{2}\right) \quad \text { or } \quad\left(E_{1}, A_{1}\right) \stackrel{S, T}{\cong}\left(E_{2}, A_{2}\right)
$$

Theorem 1 (Quasi-Kronecker Form). For any $E, A \in \mathbb{R}^{\ell \times m}, \exists$ invertible $S \in \mathbb{R}^{\ell \times \ell}$ and invertible $T \in \mathbb{R}^{n \times n}$:

where $\left(E_{U}, A_{U}\right)$ consists of underdetermined blocks on the diagonal, N is nilpotent, and $\left(E_{O}, A_{O}\right)$ consists of overdetermined diagonal bolcks

Example:

$$
\left(\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\right) \cong\left(\left[\begin{array}{lll}
0 & 1 \\
& 0 & 0 \\
& & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 \\
& 0 & 1 \\
& & \mid
\end{array}\right]\right)
$$

Corollary 1. $E \dot{x}=A x+f$ has solution x for any sufficiently smooth f and each solution x is uniquely determined by $x(0)$ and f
\Leftrightarrow
$(E, A) \cong\left(\left[\begin{array}{cc}I & 0 \\ 0 & N\end{array}\right],\left[\begin{array}{ll}J & 0 \\ 0 & I\end{array}\right]\right), N$ nilpotent
(E, A) is then called regular.

