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Stabilization of switched DAEs via fast switching

Stephan Trenn∗
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Switched differential algebraic equations (switched DAEs) can model dynamical systems with state constraints together with
sudden structural changes (switches). These switches may lead to induced jumps and can destabilize the system even in the
case that each mode is stable. However, the opposite effect is also possible; in particular, the question of finding a stabilizing
switching signal is of interest. Two approaches are presented how to stabilize a switched DAE via fast switching.
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1 Introduction

In this note the stabilization of switched differential-algebraic
equations (switched DAEs)

Eσẋ = Aσx (1)
via fast switching is investigated. In particular, the
Mironchenko-Wirth-Wulff (MWW) approach [5, 6] is com-
pared with our recently proposed approach via averaging [9].
It is well known, that switched DAEs of the form (1) ex-
hibit jumps in the state-variable x as well as possible Dirac-
impulses (derivatives of jumps), c.f. [12]. The latter impulsive
behavior is important, but does not influence the jumps and
the continuous flow of the solutions. Because of that, only the
impulse-free part of the solution will be considered in the fol-
lowing. The effect of fast switching on the impulsive part of
the solution is not yet fully understood, some first (surprising)
results are discussed in [11].

A sufficient criterium for stabilizability via fast switching
for switched ordinary differential equations (switched ODEs)
of the form

ẋ = Aσx (2)
is the existence of a Hurwitz convex combination

∑
i diAi,

di ∈ [0, 1] with
∑
i di = 1. In that case the classical averaging

results yield that the solution of (2) can be approximated ar-
bitrarily well via fast switching by the averaged non-switched
ODE

ẋ = Aavx with Aav :=
∑
i

diAi. (3)

In this note, the generalization of this result to switched DAEs
is discussed.

2 DAE preliminaries

A matrix pair (E,A) ∈ Rn×n × Rn×n is called regular, iff
det(Es − A) ∈ R[s] is not the zero polynomial. It is a well
known fact, that (E,A) is regular if, and only if, there exist
invertible S, T ∈ Rn×n such that

(SET, SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, (4)

where N ∈ RnN×nN is nilpotent. Following [1] the decou-
pling (4) is called quasi-Weierstrass form (QWF), which can
easily obtained via the so-called Wong sequences.

Definition 2.1 (Consistency projector and flow matrix)
For a regular matrix pair (E,A) with QWF (4), the consis-
tency projector and the flow matrix are

Π := T

[
I 0
0 0

]
T−1, Adiff := T

[
J 0
0 0

]
T−1,

where block sizes correspond to the QWF.
The relevance of these two matrices is highlighted in the

following statement, which was first utilized in [10] in the
context of observability characterization for switched DAEs.

Lemma 2.2 All solutions of Eẋ = Ax (restricted on
[0,∞)) satisfy

x(t) = eA
difftΠx(0−), t > 0,

where x(0−) is the (possibly inconsistent) initial value just
before the DAE gets activated.

3 The MWW-approach

The key ingredient of the MWW-approach is the “jump &
flow approximation matrix”

Aε := T

[
J 0
0 − 1

εI

]
T−1 = Adiff − 1

ε
(I −Π),

where ε > 0, and the corresponding approximation result [6,
Lem 4]: (

eA
difftΠ− eA

εt
)
x0 = −e− t

ε (I −Π)x0,

in particular,
∀ε > 0 : xε(t)→ x(t) as t→∞,
∀t > 0 : xε(t)→ x(t) as ε→ 0,

where xε(·) denotes the solution of the ODE

ẋε = Aεxε, xε(0) = x0

and x(·) denotes the (impulse-free part of the) solution of
Eẋ = Ax restricted to [0,∞) with (possibly inconsistent)
initial condition x(0−) = x0.

As a consequence, for sufficiently small ε > 0, the
(impulse-free part of the) solution of the switched DAE (1)
is approximated well by the solution of the switched ODE

ẋ = Aεσx, x(0) = x0. (5)

Now the classical averaging result can be used (provided there
exists a Hurwitz convex combination

∑
i diA

ε
i ) to stabilize
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(5). As highlighted already in [6], this approach does not al-
ways work, some additional assumptions need to be satisfied.
Note that although the following approximation holds:

∀t > 0 : xσ,ε(t)→ xσ(t−) as ε→ 0,

∀t > 0 : xσ,ε(t)→ xav(t) as p→ 0

where xσ is the solution of (1) with initial condition
xσ(0−) = x0 and periodic switching signal σ with period
p > 0, xσ,ε is the solution of (5) and xav is the solution of the
corresponding averaged ODE (3), it is not true in general that
xσ approximates xσ,ε as p→ 0, in fact

xσ(t−)− xσ,ε(t)→∞ as p→ 0 is possible.
As shown in [5, 6] this blow up can be prevented, if the fam-
ily of switched ODEs (5) can be stabilized uniformly via a
single switching signal for all sufficiently small ε > 0. How-
ever, in general this will not be satisfied because the averaging
approach will result in switching signals depending on ε. In
the special situation that the flow matrices commute, then it
can be shown [6, Lem. 8], that such a uniform stabilization is
possible.

The underlying problem of the MWW-approach is that the
destabilizing effect of the consistency projectors is not di-
rectly taken into account; furthermore, the nonexistence of an
averaged model for the switched DAE (i.e. non-convergence
of the solution trajectory to some trajectory of a non-switched
system for increasingly fast switching) is not considered. On
the other hand, the MWW-approach does not necessarily need
the latter assumption to work, because the main result in [5,6]
is not restricted to stabilization via the averaging approach
(e.g. in [5] the stabilization capability of the projectors itself
is investigated).

4 A direct averaging approach

The MWW-approach can be seen as an indirect averaging
approach for stabilization via fast switching, because the
switched DAE is first approximated by a switched ODE and
the latter is then approximated by a non-switched ODE via
fast switching. An alternative approach is to directly con-
sider the averaged model for the switched DAE (without in-
troducing the approximation parameter ε > 0), i.e. utiliz-
ing our averaging results [2–4, 7–9] for the problem of sta-
bilization via fast switching. Assume the switching signal
σ : [0,∞) → {1, 2, . . . ,q} is periodic with period p > 0
and duty cycles di ∈ (0, 1),

∑
i di = 1. Without restriction of

generality it can be assumed that σ is monotonically increas-
ing on each periodicity interval. Then the following averaging
results holds:

Theorem 4.1 ( [9]) Consider the regular switched DAE
(1) with consistency projectors Πi and flow matricesAdiff

i and
let

Π∩ := ΠqΠq−1 · · ·Π2Π1.

If the consistency projectors satisfy
∀i : im Πi ⊇ im Π∩

∀i : ker Πi ⊆ ker Π∩
(PA)

then on each compact interval in (0,∞)

‖xσ − xav‖∞ ≤ C‖xσ(0−)‖p,

where xav is the solution of

ẋav = Π∩A
diff
av Π∩xav, xav(0) = Π∩xσ(0−) (6)

with Adiff
av :=

∑
i diA

diff
i . In particular, exponential stability

of (6) implies exponential stability of (1) for sufficiently fast
switching.

Note that condition (PA) is weaker than assuming commu-
tativity of the consistency projector which in turn is a weaker
than assuming commutativity of the flow matrices Adiff. The
latter assumption was used in [5, 6] to show uniform sta-
bilizability of (5) and hence applicability of the averaging
approach. With the direct averaging approach the class of
switched DAEs for which the averaging approach can be uti-
lized for stabilization is therefore significantly enlarged.
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