Distributional averaging of switched DAEs with two modes
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Abstract— The averaging technique is a powerful tool for
the analysis and control of switched systems. Recently, classical
averaging results were generalized to the class of switched
differential algebraic equations (switched DAEs). These results
did not consider the possible Dirac impulses in the solutions of
switched DAEs and it was believed that the presence of Dirac
impulses does not prevent convergence towards an average
model and can therefore be neglected. It turns out that the
first claim (convergence) is indeed true, but nevertheless the
Dirac impulses cannot be neglected, they play an important
role for the resulting limit. This note first shows with a
simple example how the presence of Dirac impulses effects the
convergence towards an averaged model and then a formal
proof of convergence in the distributional sense for switched
DAEs with two modes is given.

I. INTRODUCTION

This note considers averaging of switched differential-
algebraic equations (DAEs) with two modes of the form

E,i = A, (1)

where o R — {1,2} is the switching signal and
Ey, A, Ey, Ay € R™ ™, Switched DAEs are a canoni-
cal modeling framework to study dynamical systems with
algebraic constraints (e.g. the Kirchhoff laws in electrical
circuits) which are subject to sudden structural changes (e.g.
faults or switches in electrical circuits), see [15].

The idea of averaging is based on the observation that the
trajectories of a switched system approach the trajectories
of an averaged non-switched system when the switching
frequency increases. An application of averaging could be
stabilization via fast switching, because it is possible that
each mode is unstable, but the average system is stable.
In general, the analysis of the switched system simplifies
significantly when it can be sufficiently well approximated
by an averaged system.

For switched (linear) ordinary differential equations
(ODEs), i.e. where E, = I in (1), it is well known (see
e.g. [2] or [3]) that convergence towards an average model
is always guaranteed. However, due to the presence of jumps
in the solutions of switched DAEs (1) convergence towards
an average system does not always takes place and additional
assumptions have to be made [5], [4], [9], [7], [8]. In
addition to jumps, the solutions of (1) can also contain Dirac
impulse (the observation that inconsistent initial values can
induce Dirac impulses was already made in [17], for a recent
discussion on the effect of inconsistent initial values see [16,
Sec. 3]). The available averaging results for switched DAEs
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do not allow for Dirac impulses in the solutions and in [5,
Rem. 1] the hope was articulated that the effect of the Dirac
impulses for fast switching can be neglected, because the
Dirac impulses are induced by the jumps in the solutions
and the magnitude of the jumps converges to zero for an
increasing switching frequency. Unfortunately, this is not
true. Nevertheless, it is possible to show convergence in a
distributional sense of the trajectories of the switched DAE
towards trajectories induced by an non-switched average
system, which is the major novel contribution of this note.

The structure of this note is as follows: First some
mathematical preliminaries are recalled. Afterwards, a simple
example is discussed which shows that Dirac impulse cannot
be neglected. In Section IV the main result concerning the
distributional convergence of the trajectories of the switched
DAE for increasing switching frequency is shown.

II. MATHEMATICAL PRELIMINARIES

A. Distribution theory

The space of distributions is
D:={ D:C5° — R | D is linear and continuous },

where C§° is the space of test functions [11], i.e. the space of
smooth functions with compact support, where the support
of ¢ : R — R is defined as

suppp :={tER | p(t) #0 }.

Note that continuity of D : C§° — R is only well defined
with respect to a certain locally convex topology on C§°, see
e.g. [10, Def. 6.3 & Thm. 6.4]. Distributions are also called
generalized functions because any locally integrable function
f:R — R induces a distribution as follows:

fD:ca’MR,w/sof.
R

The Dirac impulse (a.k.a. Dirac Delta or Delta “function™) at
t € R is not induced by any function and is formally defined
as

6::Co° = R, o 0e(p) = o(t).

Distributions are always differentiable with derivative
D'(¢) := =D(¢).

This derivative generalizes the standard differentiation of
differentiable functions, because integration by parts yields
(f)p = (fp)’ for any differentiable function f : R — R.
The Dirac impulse Jy is the distributional derivative of
the Heaviside step function, this motivated the common
“definition” of the Dirac impulse as do(t) = 0 for ¢ # 0 and



d0(0) = oo with fR d9 = 1; although not formally correct,
this “definition” helps to visualize the Dirac impulse as an
infinite peak.

It is well known (see e.g. [10, Thm. 6.17]) that a sequence
(D )nen of distributions converges if, and only if, for
each test function ¢ € C§° the sequence (D, (¢))nen of
real numbers converges; in particular, the limit given by
D(y) := lim,, o Dn(¢) is again a distribution (i.e. linear
and continuous). In this note convergence on an interval
J C R will be of interest, which means that D(y) =
lim,, o0 Dy (¢) is only considered for test functions whose
support is contained in J; the notation for this “restricted”
convergence is

D, — D.
Dy

The whole space of distribution is not suitable as a solution
space for switched DAEs because the product of a piecewise-
constant function with a general distribution is not well
defined. To overcome this problem, one can introduce the
smaller space of piecewise-smooth distributions [14]

DpWCOO =
_ [ ey, T CRis discrete
{D_fD+ZDt YVt € T : Dy € span{dy, 6,07, ...}’
teT A

where Cgy is the space of piecewise-smooth functions, i.e.
functions of the form f = > ., (fi)[s,,s:.1)» Where f;, i € Z
are smooth and { s; | i € Z } is ordered and locally finite.
In other words, a piecewise-smooth distribution D consists
of a function part fp and a purely impulsive part D[] :=
ZteT D, which contains Dirac-impulses (and its derivates)
at isolated points in time, see Figure 1
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Fig. 1. Tllustration of a piecewise-smooth distribution D = fp+3_, e Dt
Dirac impulses (and there derivatives) are shown as arrows.

For a piecewise-smooth distribution D left- and right-
evaluation is well defined via D(tT) := f(t*) =
limo o f(t £¢) as well as the impulsive evaluation D[t] :=
D, if t € T and zero otherwise.

B. Solution theory of switched DAEs

A matrix pair (E, A) € R"*"™ x R"*" is called regular, if
the polynomial det(sE — A) is not the zero polynomial; and
the switched DAE (1) is called regular if both matrix pairs
(E1, A1) and (Es, As) are regular. In [15] it is shown that
the regular switched DAE (considered on [0, 00)) has for any
initial condition 2(0~) = 2° € R™ and any switching signal
(without finite accumulation of switching times) a unique

solution © € D co. In particular, the jumps and Dirac
impulses induced by the switches are uniquely determined.
For explicit solution formulas the quasi-Weierstrass form
(QWEF) of a regular matrix pair (F, A) is helpful:

sersan=([L L[ ). e

where S, T are invertible matrices and NN is nilpotent. The
quasi-Weierstrass form can easily be calculated via the Wong
sequences [1]. Based on the QWF the consistency projector
of (E,A) is [14]

B )
H._T[O O}T ,

the flow and impulse matrix of (E, A) are [12]

Adiff =T |:'] O:| T_l,

0 0

i 0 O
imp .__ —1
E™ =T [0 N] T .

Note that although the QWF transformation matrices S and
T are not unique, the resulting consistency projector, flow
and impulse matrices are unique.

In this note the following periodic switching signal is
considered:

ot) = {1, t e [kp,kp+dip), k€N )

2, telkp+dip,(k+1)p), keN
with period p > 0 and duty cycle 0 < d; < 1 of the
first mode (d2 := 1 — dy will denote the duty cycle of the
second mode in the following). Let I1;, A% EI™ i = 1,2
denote the consistency projector, flow and impulse matrix
of the regular matrix pair (E;, 4;). Then the impulse-free
part zf := x;, — x,[-] of the distributional solution ;, of (1)
satisfies

el (ty) = (eA‘i‘"dﬁngAdf"dlpnl)kxo, @)
where t := kp, k € N, and for 7 € [0, p)
o ((tk + 7)) = Myp(r)] (t),),
where

eA(ianl, T E [0, dlp)v
eA(;m(T_dlp)H2€A(imdlp1_‘[17 T E [dlpup)'

My(7) = {

The impulses at the switching times t; and si : =ty + dip
are given by ([12, Cor. 5], c.f. [13, Rem. 6]):

n—2

zpltn] = = (B el (57)01,
1=0
n—2

wp[sk] = — Y (E5™)Haf (s1)80).

=0



III. AN ILLUSTRATIVE EXAMPLE
Consider the switched DAE (1) with modes

1 0

(Ey, Ay) = 00|, 1 0]],
10 | o 1]
[1 0 0] [0 0 0]

(B2, A)= (10 1 0o],[1 0 0
0 0 1] [0 0 0]

and switching signal (3). Note that both modes are already in
QWE iee. S =T = I in (2). Since &, 1 = 0 in both modes
it is clear that the first component x, ; of the solution z,
satisfies xﬁ’l(t) =129 € R and z,,[-] = 0. Furthermore, on
the open intervals between the switching times it is easily
seen that x;;?,(t) = 0 in both modes and x;j,g(t) = 0 in mode
one and

!

Tp,2

(sp +7) = l‘(l)T, 7 € (0,dap)

in mode two, see Figure 2a for d; = 0.3. Clearly, with an in-
creasing switching frequency the jump magnitude converges
to zero. Since ¥, 2 = Tp,3 in mode one, it follows that the
jumps in x, » induce Dirac impulses in z,, 3, see Figure 2b.
In particular

oo
Tps = Tp3[] = — Z d2pm?5kp-
k=1

Clearly, the magnitude of the Dirac impulses converge to

A e

(a) Second component ;2 = (xz’: ,2)]@; large switching period p (blue, thick),
small p (red, thin).
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(b) Impulsive part (Dirac impulses are visualized as arrows whose length
reflect its magnitude) of third component x, 3 = p 3[-]; large switching
period p (blue, thick), small p (red, thin).

Fig. 2. Second and third component of the solution of the switched DAE
from Section III.

t (1) ‘

zp,3lt] +

zero proportionally with the decreasing period p, but at the
same time the number of Dirac impulses in any interval
increases linearly with the increasing frequency 1/p. The
question is now: Does the impulsive part z3[-] converges to
zero in the distributional sense (as hoped in [5])?

For any ¢ € C§° with suppy C [0,7], T € R, it holds
that

T/p) T/p)
Tpall(@) = = > dapaldip(p) = —daal > pp(kp).
k=1 k=1

But the latter is just the (right) Riemann sum of ¢ on
the interval [0,7] and convergence is guaranteed, since ¢

is smooth (and therefore in particular Riemann integrable),
hence (with 1 : R — R, ¢ +— 1)

p—0
—

T
mpallle) 8 —aat [ = (~da)1o(e),
i.e. the impulsive part converges to the nonzero constant
function —dsx9. In particular, the Dirac impulses cannot be
neglected for an increasing switching frequency!

This example showed that although the distributional limit
does not contain Dirac impulses, the limit of the impulse part
does not vanish. This seems counterintuitive and its relevance
for real world scenarios is not clear. Of course there are no
Dirac impulses in the real world, but only very high peaks.
For example, a non-ideal Dirac impulse could be given by,
for € > 0,

. 0, 7¢[t—e,t+e],
6t(7_>{1_|7'—2t| TE[t—E,t—i—E}

€ € ’

The corresponding “realistic” third component of the solution
of the example is then given by

LT/p]

zp 3] = Z dgpx(fé,ip (5)

k=1
and its behavior for large, medium and small p is shown in
Figure 3. Clearly the individual non-ideal Dirac impulses
converge to zero as p gets smaller, however due to the
overlapping of the supports the sum (5) does not converge
to zero.

wp,3[t]° 1

Fig. 3. Non-ideal impulse solution x;, 3[-]¢ for large switching period p
(thick, blue), medium p (thick, red) and small p (green); thin red and green
lines are the individual non-ideal Dirac impulses 6fk.

IV. MAIN RESULT

Theorem 1: Consider the regular switched DAE (1) with
initial condition #(0~) = 2% € R™ and periodic switching
signal ¢ = o, given by (3) with period p > 0. Let A",
E™, 11, i = 1,2 be the flow matrix, impulse matrix
and consistency projector of the corresponding matrix pair
(Ei, A;). Assume that the consistency projectors commute,
ie.

Hﬂ = H1H2 = HQHl.

Then the solution z, = (z])p + xp[] € Dpuce of the
switched DAE converges to the solution z,, : R — R of
the average ODE

Zay(0) = I 20,

where A3 .= TI(dy AST + dp AST)II, in the following
sense:

. pdiff
Tay = Ay T,



(i) For any compact J C (0, c0):

() = 2av)3lloe = O(p).
(ii) For any compact J C (0, 00):
zpl ] E _Ezla[vnpmaVDa asp — 0,
where
n—2 ) )
Em .— Z(dl(E;mP)erlA(ilff + d2(Ellmp)erlAglff)(Agi,ff)z'
i=0

(iii) In particular, for any compact J C (0, 00):

asp—0

Lp W (I - Ezilr\?p)xav]]) 5

Proof: In [5, Thm. 2] the convergence (i) was already shown,
and it remains to show the convergence of the impulsive
part. First observe, that A% = AT, = [T, A% and hence

Ad'ffdl”H =1 Al dlpHZ, 1 = 1,2. This implies, invoking
4), for k > 0,

ol (th) = ha! () = Ml (t;) = nzd ()
and, for s := tx + dip,
:cg(sﬁ) = ng]’:(s;) = Hngxg(s,;) = ang(s,;),
i.e. at each switch the impulse-free part of the solution jumps
back to the intersection imIl4 = imIIl; N imIls; of the
consistency spaces (cf. [5, Lem. 1]).
Claim:

E{™af (1) = dapE™ A"y (1) + O(p?),
E;mpr (Sk ) = dlpElmpAdlffxav(Sk) + O( )
To show this

claim, note first that zg(tk) =

A“‘“dszf (s{_,), hence, invoking the general approximation
AT = [+ At + O(p?) for any 7 € [0, p],

E™a)(t;) = B (1 + dopAS™ + O(p°))xf (sf,)
= Elmp f(sk )+ d2PElmpAd]“ f(Sk 1)
+ O(p?).
From z/(s{_;) € imll5 C imIl; C ker Eilmp and
zd(si_1) = zay(sk—1) + O(p) due to (i) it follows that
E1mp f(tk) _ dszlmpAdlffl,aV(Sk 1) 4 O( )

Finally, observing that x,(sx—1) = e—Aw d2pg.(tr) = (I —
dop AT + O(p?))2av(tr) = zav(tr) + O(p), the claim is
shown for E,"x} (t,); analogous argument show the claim

also for E3™x](s; ). To show convergence of the impulse
part z,[] let ¢ 6 C&° with supp ¢ C 7, then

2o 1(0) = D> wpltl (@) + D wplsel(

tr€l sp€l

=-> Ti(EilmP)i“a:gj(t

trel i=0

n—2
- S

spel i=0

2 )eW (tr)

509 (s1)

n—2

= - Z Z (Eilmp)i+1Agiffd2 P Tay (tk)(p(i)(tk)

=0 thI

o Z Z lmP 2+1Ad1ffdlpxdv(5k) (l)(sk)
i=0 SkEI

+ Y. 00
tp,sp€l

Since there are at most 2(1 + (b—a)/p) many switchings in
the compact interval J =: [a, b] it follows that

> 0 =0().
tr,skE€l

Recall the properties of a (right) Riemann sum of a contin-
uous function f on [a, b]:

> pft) =

trp€la,b]

b

f+0(p),

hence, for any ¢ =0,...,n — 2:

ST (B HLAST D p g (1) (1)

trel
= (B™)+ A§d, / za e + O(p).

Furthermore, invoking ¢V (a) = 0 = ¢ (b) and partial

integration it follows that

b . b . b . .
/ maV‘P(z) = / wz(nz/)‘P = / (Agi,ff)zxavcp,
a a a

hence (using analogous arguments for the impulses at si)
n—2 ) ) ‘ o b
l'pH((,O) — Z(Ellmp)l+1Ac211ffd2(Ag:/ff)z/ Tavp
=0 a
n—2 b

(BN () [
=0 a

+ O(p)

b
= _E;r\?p/ Tavp + O(p)
Tavp(p) + O(p).

In particular, z,[](¢) = —Em’zwp(p) as p — 0, which
concludes the proof.

__ _ ppimp
- Eav

|
For the example from Section III the involved matrices
are given as follows:
I, = {588} and Ty = I
000

which clearly commute, hence Theorem 1 is applicable.
Furthermore,

diff diff diff
A" =0, A" =A4,, AN =0,
and
' 000 i i 000
E™ = [ooo}, Ey® =0, EZNP= {0 00]
010 dy 00



Hence the function part xzfi of the solution of the switched
DAE converges to the constant trajectory

Tay(t) = (23,0,0)

and the impulsive part x,[-] converges to the constant func-
tion
i 0\ T
—E;?pl‘av(t) = (07 0, _d2x1>

which coincides with the ad hoc analysis from Section III.
Theorem 1 also provides a simple criteria which ensures
that the Dirac impulses have no influence on the averaging:
Corollary 2: With the same notation as in Theorem 1
assume:

EyPAST = and E™AST = 0.
Then, for any compact interval J € (0, 00),

Zp HT: TayD-

Remark 3 (Commuting consistency projectors): The cru-
cial assumption of Theorem 1 is commutativity of the
consistency projectors. This assumption was also used (and
motivated) in [5] to show convergence of the impulse-free
part of the solution, but was recently relaxed [8]. However,
it is not clear whether this relaxation is also applicable
for the convergence of the impulsive part of the solution.
As already pointed out in [5, Rem. 4] a straight-forward
generalization of the averaging result to more than two
modes is not possible, but with a different proof technique
(e.g. the one used in [4] or [8]) it may be possible to also
show convergence of the impulsive part for more than two
modes. In the special case of commuting A4 matrices it
follows that all consistency projectors commute with each
other as well as with all A%f-matrices [6, Lem. 9]; hence in
that case the proof technique used here can be generalized
to more than two modes.

V. CONCLUSION

It was shown that the presence of Dirac impulses in the
solution of switched DAEs do not prevent applying the
well established averaging technique. However, the Dirac
impulses cannot be neglected, although the limit is impulse
free. This effect is also visible when considering the more
realistic scenario where instead of ideal Dirac impulses the
approximation of Dirac impulses is considered. Hence one
can expect that this theoretical result will also play an
important role when applying the average technique in the
real world.

This note only considers the case of two modes with com-
muting consistency projectors and the author believes that a
generalization to more than two modes and non-commuting
consistency projectors should be possible. However, the
proof technique used here is only possible for two modes
with commuting projectors, because it was utilized that after
each switch the trajectory jumps back into the intersection of
the consistency spaces. This is not true anymore for switched
systems with more than two modes, hence another approach
is needed and is the topic of future research.

VI. ACKNOWLEDGEMENTS

The author wants to express his thanks to Professor
Francesco Vasca (University of Benevento, Italy) and his
PhD students Carmen Pedicini and Elisa Mostacciuolo who
motivated the author to start working on averaging for
switched DAEs.

REFERENCES

[1] Thomas Berger, Achim Ilchmann, and Stephan Trenn. The quasi-
Weierstra form for regular matrix pencils. Lin. Alg. Appl.,
436(10):4052-4069, 2012.

[2] Jelel Ezzine and Abraham H. Haddad. Error bounds in the averaging
of hybrid systems. [EEE Trans. Autom. Control, 34(11):1188-1192,
1989.

[3] Luigi Iannelli, Karl Henrik Johansson, Jonsson Ulf T., and Francesco
Vasca. Averaging of nonsmooth systems using dither. Automatica,
42(4):669-676, 2006.

[4] Luigi Iannelli, Carmen Pedicini, Stephan Trenn, and Francesco Vasca.
An averaging result for switched DAEs with multiple modes. In Proc.
52nd IEEE Conf. Decis. Control, Florence, Italy, pages 1378 — 1383,
2013.

[5] Luigi Iannelli, Carmen Pedicini, Stephan Trenn, and Francesco Vasca.
On averaging for switched linear differential algebraic equations. In
Proc. 12th European Control Conf. 2013, Zurich, Switzerland, pages
2163 - 2168, 2013.

[6] Daniel Liberzon, Stephan Trenn, and Fabian R. Wirth. Commutativity
and asymptotic stability for linear switched DAEs. In Proc. 50th IEEE
Conf. Decis. Control and European Control Conference ECC 2011,
Orlando, USA, pages 417-422, 2011.

[7]1 Elisa Mostacciuolo, Stephan Trenn, and Francesco Vasca. Averaging
for non-homogeneous switched DAEs. In Proc. 54th IEEE Conf.
Decis. Control, Osaka, Japan, 2015. To appear.

[8] Elisa Mostacciuolo, Stephan Trenn, and Francesco Vasca. Averaging
for switched DAEs: Convergence, partial averaging and stability.
Submitted for publication, preprint available from the authors’ website,
2015.

[9] Elisa Mostacciuolo, Stephan Trenn, and Francesco Vasca. Partial
averaging for switched DAEs with two modes. In Proc. 14th European
Control Conf. 2015, Linz, Austria, pages 2901-2906, 2015.

[10] W. Rudin. Functional Analysis. McGraw-Hill, New York, 1973.

[11] Laurent Schwartz. Théorie des Distributions. Hermann, Paris, 1957,
1959.

[12] Aneel Tanwani and Stephan Trenn. On observability of switched
differential-algebraic equations. In Proc. 49th IEEE Conf. Decis.
Control, Atlanta, USA, pages 5656-5661, 2010.

[13] Aneel Tanwani and Stephan Trenn. An observer for switched
differential-algebraic equations based on geometric characterization
of observability. In Proc. 52nd IEEE Conf. Decis. Control, Florence,
Italy, pages 5981-5986, 2013.

[14] Stephan Trenn. Distributional differential algebraic equations. PhD
thesis, Institut fiir Mathematik, Technische Universitit Ilmenau, Uni-
versititsverlag Ilmenau, Ilmenau, Germany, 2009.

[15] Stephan Trenn. Switched differential algebraic equations. In Francesco
Vasca and Luigi Iannelli, editors, Dynamics and Control of Switched
Electronic Systems - Advanced Perspectives for Modeling, Simulation
and Control of Power Converters, chapter 6, pages 189-216. Springer-
Verlag, London, 2012.

[16] Stephan Trenn. Solution concepts for linear DAEs: a survey. In Achim
Ilchmann and Timo Reis, editors, Surveys in Differential-Algebraic
Equations I, Differential-Algebraic Equations Forum, pages 137-172.
Springer-Verlag, Berlin-Heidelberg, 2013.

[17] George C. Verghese, Bernard C. Levy, and Thomas Kailath. A
generalized state-space for singular systems. I[EEE Trans. Autom.
Control, AC-26(4):811-831, August 1981.



