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Multilayer perceptrons: Approximation order and
necessary number of hidden units

Stephan Trenn

Abstract—This paper considers the approximation of suffi-
ciently smooth multivariable functions with a multilayer percep-
tron (MLP). For a given approximation order explicit formulas
for the necessary number of hidden units and its distributions
to the hidden layers of the MLP is derived. These formulas
depend only on the number of input variables and on the de-
sired approximation order. The concept of approximation order
encompasses Kolmogorov-Gabor polynomials or discrete Volterra
series which are widely used in static and dynamic models
of nonlinear systems. The results are obtained by considering
structural properties of the Taylor polynomials of the function
in question and of the MLP function.

Index Terms—multilayer perceptron, approximation, necessary
number of hidden units

I. INTRODUCTION

The original motivation for artificial neural networks
(ANNs) was modelling cognitive processes observed in an-
imals and humans. Many applications of ANNs show that this
approach was very useful, although it also became clear that
some problems can not be solved with ANNs or could be
solved better with other approaches. Nowadays there are lots
of different types of ANNs and the connection to biological
neural networks is very loose, if there is any at all. For
a comprehensive overview over different kinds of neural
networks see [1], where also the biological background and
historical remarks are given. In this paper only the multilayer
perceptron (MLP) is studied, which is very popular in the
application area as well as in theoretical research. The reasons
for this popularity might be
• its simplicity,
• its scalability,
• its property to be a general function approximator,
• and its adaptivity.
The MLP was primarily used for classification problems, but

its capability to approximate functions made it also interesting
for other applications. One of these applications is modelling
and control, where ANNs, in particular MLPs, are successfully
used (see, e.g., [2] and [3]).
When using ANNs in applications, there are two main ques-
tions:
• Is it theoretically possible to solve the task with the

considered class of ANNs?
• How can one find an ANN which solves the task?
In general, ANNs are scalable, i.e. they can have different

sizes, and they are adaptive, i.e. they have parameters which
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can be changed. In most cases the structure and size of an
ANN are chosen a priori and afterwards the ANN “learns” a
given task, which is nothing more than adjusting the parame-
ters in a certain way. Therefore, the first question deals with the
structure and size of the ANN and the second question targets
the change of the parameters, i.e. the learning procedure.

The first question is strongly connected to two other ques-
tions:
• What size or structure is necessary to solve a given task?
• What size or structure is sufficient to solve a given task?
This paper gives an answer to the first of the last two

questions for a specific task. It is an important question
whether the necessary size is also sufficient, but an answer
to this question is not in the scope of this paper. The question
how to learn an ANN is also not in the scope of this paper.

The task which is considered here is to approximate
any function, which is sufficiently smooth, with a given
approximation order. One function approximates another
function with a specific order if the function value and all
derivatives up to the specific order coincide at one fixed
point, i.e. the Taylor polynomials are the same. This kind
of approximation plays an important role in control theory,
where often a steady-state is considered and it is important
that in a neighbourhood of this steady-state the function
which approximates the system or the controller is very
accurate. On the other hand, the accuracy far away from the
steady-state does not play an important role. In systems theory
it is a widely used method ([4]–[7]) to model nonlinear static
and dynamic systems with multivariable polynomials of a
certain degree or with truncated discrete Volterra series (these
polynomials are also called Kolmogorov-Gabor polynomials).
Clearly, this is a special case of the concept of approximation
order. In fact, the widely used method of linearization is just
an approximation with approximation order one. The question
which will be answered in this paper is therefore:

Which size and structure is necessary for an MLP to
approximate any sufficiently smooth function with a given
approximation order?

There is a wide range of literature on the principle pos-
sibility of MLPs to approximate continuous function to any
given accuracy, for a good overview see [8] and the references
therein. There the focus is on global approximation accuracy,
but the results are qualitative in nature, i.e. the formulas
include unspecified constants and can therefore not be used
directly to calculate the necessary number of hidden units.
The same is true for the results in [9], where in addition
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the constants depend on the specific function which should
be approximated. To the authors best knowledge there are no
explicit formulas for the number of necessary hidden units
available, where no quantities of the specific function are
needed. The answer to the above question which is given
in this paper (see Theorem 13) only depends on the desired
approximation order and the number of inputs. Note that the
calculated necessary number of hidden units is a worst case
number, i.e. if the number of hidden units is smaller than the
calculated number then there exists a function which can not
be approximated with the desired approximation order. There
are of course special function which can be approximated with
less hidden units.

To find an answer to the above question a system of non-
linear equation is considered. If this system is to “small” then
it is not always solvable and the consequence is that the MLP
cannot approximate all functions with a given approximation
order. In this case it is not possible to achieve the desired
approximation order for some functions, even if one has
infinitely many exact data points of the functions.

Finally it should be mentioned that the results in this paper
are of theoretical nature. In practical applications one perhaps
has more information about the function which should be
approximated and therefore better bounds for the size of the
network can be calculated or estimated. Furthermore the data
points might not be exact and therefore statistical approaches
might yield better results. Hence, the results in this paper do
not make classical methods like cross-validation or pruning
(e.g. as in [10]) superfluous but might be an additional tool
for finding the best size of the network. The main contribution
of this paper is the theoretical analysis of an MLP as a special
parametric function approximator; in particular, the focus is on
structural questions and not on questions about practical ways
of adjusting the parameters (i.e. training methods, choosing
training data, etc.). It is also important to distinguish the
results of this paper from results which are based on the
analysis of the distribution of the sample data (e.g. as in [11]),
because these approaches deal with classification problems
and the concept of approximation order makes no sense for
classification problems, which can be seen as the search
for a global approximator of the corresponding non-smooth
indicator function of the class.

This paper is structured as follows. In Section II the MLP
model is briefly described and a formal definition is given.
Section III deals with the concept of “approximation order”
(Definition 3). In this context Taylor polynomials, analyticity,
and the approximation accuracy of Taylor polynomial ap-
proximation are revisited. In particular a sufficient condition
is given for which a high approximation order of an MLP
implies good overall approximation accuracy (Proposition 6).
Section IV gives a step-by-step derivation for the main results
(Theorems 12 and 13) and gives some further interpreting
remarks on these results. To improve readability all proofs
of the results are put in the Appendix.

This section finishes with some remarks on notation. The
natural and real numbers are denoted by N and R, resp.,
K = [−1, 1]n0 ⊆ Rn0 is the compact n0-dimensional unit
cube for some n0 ∈ N, the latter is used to denote the

number of relevant inputs. For N ∈ N ∪ {∞} the space of
N -times continuously differentiable functions from some set
A to some set B is CN (A → B), the N -th derivative of
f ∈ CN (A → B) is denoted by f (N) or f ′, f ′′ for N = 1, 2.
For some sufficiently smooth function f the Taylor polynomial
of degree N is denoted by TN{f} (see Definition 4 for details).
A function f : A → B is called surjective, if it is “onto”, i.e.,
f(A) = B. For two vectors x,y ∈ Rn, n ∈ N, the standard
Euclidian inner product is denoted by x · y, the maximum
norm of x ∈ Rn is denoted by ‖x‖ := max

{|x1|, . . . , |xn|
}

.
For some real number x the value bxc is the largest integer
not bigger than x, the value dxe is the smallest integer not
smaller than x.

II. THE MULTILAYER PERCEPTRON (MLP)

The multilayer perceptron (MLP) is a very simple model of
biological neural networks and is based on the principle of a
feed-forward-flow of information, i.e. the network is structured
in a hierarchical way. The MLP consists of different layers
where the information flows only from one layer to the next
layer. Layers between the input and output layer are called
hidden layers. From a theoretical point of view, it is not
necessary to consider more than one output unit because two
or more output units could be realized by considering two or
more MLPs in parallel. However, if the outputs are correlated
it may be possible to achieve the same approximation results
with fewer hidden units. Nevertheless, a correlation analysis of
different outputs and its implications to the necessary number
of hidden units is beyond the scope of this work.

The input units play no active role in processing the
information flow, because they just distribute the signals to
the units of the first hidden layer. All hidden units work in
an identical way and the output unit is a simpler version of
a hidden unit. In an MLP, each hidden unit transforms the
signals from the former layer to one output signal, which
is distributed to the next layer. Each hidden unit has an, in
general nonlinear, activation function. The activation function
is modulo a translation via an individual bias the same for all
hidden units. The output of a hidden unit is determined by the
weighted sum of the signals from the former layer, which is
then transformed by the activation function. In the output unit
the activation function is the identity function.

The following two definitions give a formal definition of
an MLP and the corresponding MLP function. Most of the
formalism is not needed in the rest of the paper, but it is
necessary to give a precise definition of an MLP, on which
the results of the paper are based on.

Definition 1 (Multilayer Perceptron - MLP): A multilayer
perceptron (MLP) is a quadtuple

(h,n, σ,P),

where h ∈ N is the number of hidden layers, n =
(n0, n1, . . . , nh) ∈ Nh+1 is the number of units per hidden
layer (the hidden layer zero is the input layer), σ : R→ R is
the activation function and

P = (W1, . . . ,Wh,wy),
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where, for i = 1, . . . , h, Wi = (wi,1, . . . ,wi,ni) ∈
(Rni−1+1)ni are the parameters (weights and biases) between
the (i − 1)-th and i-th hidden layer and wy ∈ Rnh is the
vector of the parameters between the last hidden layer and
the output unit.

Definition 2 (MLP function): For an MLP (h,n, σ,P) as in
Definition 1, the MLP-function

fMLP : Rn0 → R, x = (x1, x2, . . . , xn0) 7→ y

is recursively defined by

y = wy · zh, where

zh =
(

σ(wh,1 · zh−1) , . . . , σ(wh,nh · zh−1)
)
,

zi =
(

σ(wi,1 · zi−1) , . . . , σ(wi,ni · zi−1) , 1
)

for i = h− 1, . . . , 1,

z0 = (x1, x2, . . . , xn0 , 1).

Note that for standard MLPs the activation function is given
by σ(t) = 1/(1+e−t). For the results in this paper the specific
form of the activation function does not play any role, it is only
assumed, that the activation function is smooth (otherwise the
concept of approximation order does not make sense). Indeed,
it turns out that the above activation function does not fulfill
the assumptions of Proposition 7, where conditions are given
for which a higher approximation order implies a better overall
approximation accuracy; nevertheless the main results of this
paper still hold for this activation function.

For practical applications it is not necessary to consider
the MLP function as a function on the whole space Rn0 ,
because the input is restricted by physical or other bounds.
It is therefore no restriction to assume that the input x =
(x1, x2, . . . , xn0) ∈ Rn0 is scaled such that x1, x2, . . . , xn0 ∈
[−1, 1]. Hence, in the rest of the paper the input space is
K = [−1, 1]n0 .

III. APPROXIMATION ORDER

MLPs are used to approximate some function. It is
necessary to precisely define what “approximation” should
mean, in particular, when one approximation is better then
another. One possible measure for approximation accuracy
might be the largest error between the function and its
approximator. It is well known that MLPs can approximate
any continuous function with an arbitrary high approximation
accuracy in the above sense (see e.g. [8]), but there are doubts
that this result can be practically achieved if the structure
of the MLP is fixed, [12]. Often the overall accuracy is less
important than a good local approximation; this viewpoint
yields the concept of “approximation order”.

Definition 3 (Approximation order):
A function f ∈ CN (K → R) approximates g ∈ CN (K → R)
with order N ∈ N if, and only if, f(0) = g(0), f ′(0) = g′(0),
f ′′(0) = g′′(0), . . . , f (N)(0) = g(N)(0).

The concept of approximation order is strongly connected
with Taylor polynomials:

Definition 4 (Taylor polynomial): For N ∈ N and f ∈
CN (K → R),

TN{f} : K → R, x 7→
N∑

i=0

1
i!

f (i)(0)xi

is the Taylor polynomial of degree N . For N → ∞, T∞{f}
is called the Taylor series, if it exists.

Note that the derivatives of f are viewed as multilinear
mappings and f (i)(0)xi stands short for f (i)(0)(x,x, . . . ,x)
(see VII.5 in [13]). The evaluation of this multilinear mappings
yields multivariable polynomials, e.g.,

T2{f}(x1, x2) =
f(0)︷︸︸︷
a01 +

f ′(0)(x1,x2)︷ ︸︸ ︷
a11x1 + a12x2

+ a21x1
2 + a22x1x2 + a23x2

2

︸ ︷︷ ︸
1
2 f ′′(0)(x1,x2)2

,

where a01, . . . , a23 ∈ R are the coefficients of the Taylor
polynomial T2{f} which are determined by f .

Clearly, some sufficiently smooth function f approximates
another function g with order N if, and only if,

TN{f} = TN{g}.
It is a classical result, that for sufficiently smooth functions

f the Taylor polynomial TN{f} is a local approximation
of f , [13, Thm. VII.5.11]. But even if the Taylor series
converges it does not necessarily coincide with the function
or is a good global approximation. The following proposition
gives an answer to the question, when a local approximation
is also a good global approximation. For the formulation of
the proposition the following definition is necessary first.

Definition 5 (Analyticity): A function f ∈ C∞(
K → R

)
is

called analytical (in zero) if, and only if, there exist δ > 0
such that

T∞{f}(x) = f(x) ∀x ∈ K with ‖x‖ < δ.

A function f ∈ C∞(
K → R

)
is called nicely analytical if,

and only if,

T∞{f}(x) = f(x) ∀x ∈ K (1)

and

lim sup
k→∞

k

√∥∥f (k)(0)
∥∥

k!
< 1, (2)

where ‖f (k)(0)‖ is the operator norm of the multilinear
operator fk(0) (see e.g. [13, Thm. VII.4.2]).

Proposition 6 (Local vs. global approximation): If f and g
are nicely analytical functions then there exists for every ε > 0
an Nε ∈ N such that the following implication holds

TNε{f} = TNε{g} ⇒ sup
x∈K

∣∣f(x)− g(x)
∣∣ < ε,
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i.e. for nicely analytical functions better local approximation
implies better global approximation.

It is no restriction to consider only nicely analytical
functions as target functions, because all polynomials are
nicely analytical and the space of polynomials is dense in
the space of continuous functions, see, e.g., [14, Kor. V.4.8].
The condition that the MLP function is nicely analytical
might restrict the choice of the activation functions. The
following proposition give a condition for the activation
function which ensures that the corresponding MLP function
is nicely analytical.

Proposition 7 (Nicely analytical MLP function): Consider
an MLP with an analytical activation function σ : R → R
for which T∞{σ}(t) = σ(t) for all t ∈ R, i.e., the Taylor
series coincide globally with σ. Then the MLP function
fMLP : K → R is nicely analytical.

The two former propositions show that for appropriate
activation functions of the MLP an arbitrarily good global
approximation can be achieved by increasing the approxima-
tion order with which the MLP function approximates the
desired nicely analytical function. However, it will not be
possible to directly calculate the necessary size of an MLP
to achieve a given (global) approximation accuracy, because
the necessary approximation order will in general depend on
the target function. As already mentioned above, the standard
activation function given by σ(t) = 1/(1+e−t) does not fulfill
the condition of Proposition 7. An activation function which
fulfills the assumption of Proposition 7 is, for example, the
sine function. It should be noted at this point, that although
polynomials fulfill the condition of Proposition 7 they can
for large Nε not fulfill the left side of the implication in
Proposition 6. In particular, Proposition 6, only makes sense
if σ is not a polynomial, compare [8, Thm. 3.1].

IV. NUMBER OF NECESSARY HIDDEN UNITS

The main idea for the calculation of the necessary number
of hidden units in an MLP to achieve a given approximation
order is to ask on the one hand how many independent values
must be adjusted to achieve a given approximation order for
an arbitrarily sufficient smooth function and on the other hand
how many independent values can be adjusted by varying
the network parameters. From an abstract point of view the
latter is equivalent to the question, whether some function
with n variables can have as function values all values of an
m-dimensional space. A necessary condition is given in the
next lemma.

Lemma 8 (Surjectivity of differentiable functions): Let
n,m ∈ N, U ⊆ Rn open and g ∈ C1(U → Rm). If n < m
then g is not surjective.

Although this result seems intuitively clear its proof is
not trivial. One should note, in particular, that there exist
continuous functions g ∈ C(Rn → Rm) with n < m which

are surjective. For n = 1 and m = 2 these functions are
called space filling curves or Peano curves [15].

Each MLP with fixed network parameters P induces an
MLP function fMLP : K → R. The MLP approximates a
function f ∈ CN (K → R) with order N ∈ N if, and only
if, the Taylor polynomials of degree N of fMLP and f are
equal, i.e. TN{fMLP} = TN{f}. The latter is equivalent to
the condition that all corresponding coefficients of the two
Taylor polynomials are equal. Clearly, every parameter set P
induces different MLP functions and in particular different
coefficients of the Taylor polynomial TN{fMLP}. Since the
coefficients of the Taylor polynomial TN{f} can be arbitrary
it is for the considered approximation task necessary that
the function which maps the network parameters P to the
coefficients of the Taylor polynomial TN{fMLP} is surjective.
Therefore Lemma 8 yields the next corollary.

Corollary 9 (Necessary condition for MLPs): For an MLP
with an activation function σ ∈ C∞(R → R) which can
achieve an approximation order N ∈ N for any target function
f ∈ CN (K → R) the number of network parameters can
not be smaller than the maximum number of independent
coefficients of a Taylor polynomial of degree N .

It remains now to find formulas for the number of network
parameters (as function of the number of hidden units) and the
number of independent coefficients of a Taylor polynomial.
For the latter there is a simple formula:

Lemma 10 (Number of coefficients in polynomials): A
multivariable polynomial of degree N with n0 variables has
at most (

N + n0

n0

)
=

(N + n0)!
N !n0!

independent coefficients.

The calculation of the number of parameters in an MLP
is not so straight forward, because for a given number of
hidden units the number of network parameters is not unique.
The reason is that the hidden units can be distributed in
different hidden layers in many different ways. Since the
aim is to find the necessary number of hidden units one has
to search for the maximum number of parameters when the
number of hidden units is given. The result is given in the
next proposition.

Proposition 11 (Maximum number of network parameters):
Consider an MLP with n hidden units and n0 inputs. Let
m ∈ {0, 1} be such that m ≡ n + n0 mod 2. The maximum
number of network parameters is then given by

(n0 + 2)n

if n ≤ n0 + 1 +
√

4n0 + 1−m and

(n + n0 + 3)2 + m− 1
4

− 2(n0 + 1)
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otherwise. In the first case the maximum number is achieved
for a single hidden layer MLP, in the second case two hidden
layers are necessary to achieve the maximum number, where

n1 =
n + n0 −m

2
hidden units are in the first hidden layer and

n2 =
n− n0 + m

2
hidden units are in the second hidden layer.

It should be noted that Proposition 11 states, in particular,
that more than two hidden layers are not necessary if one
wants to maximize the number of parameters for a given
number of hidden units. Combining Corollary 9 with the
results from Lemma 10 and Proposition 11 it is possible to
formulate the two main results of this paper. The first result
considers the case where the number of hidden layers in the
MLP is restricted to one (this might be relevant in technical
applications).

Theorem 12 (Main result for single hidden layer MLPs):
An MLP with one hidden layer, n0 ∈ N inputs and smooth
activation function can only achieve approximation order
N ∈ N for all functions f ∈ CN (K → R), if at least

(
N + n0

n0

)

n0 + 2

hidden units are used.

For the following main result no restriction on the number
of hidden layers is assumed. It turns out that more than two
layers are not necessary. In some cases one layer suffices but
in many cases the necessary hidden units must be distributed
to two hidden layers to achieve the necessary number of
network parameters.

Theorem 13 (Main result): Consider an MLP with n0 ∈ N
input units and smooth activation function. Let N ∈ N be the
desired approximation order. If

(
N + n0

n0

)
≤ (n0 + 2)(n0 + 1 + 2

√
n0)

then at least

n ≥


N + n0

n0




n0 + 2

hidden units are necessary to achieve approximation order
N ∈ N for all functions f ∈ CN (K → R), otherwise

n ≥ 2

√(
N + n0

n0

)
+ 2(n0 + 1) − n0 − 3

hidden units are necessary.
In the first case an MLP with one hidden layer achieves
the necessary number of parameters. For the second case the

necessary number of parameters are obtained for an MLP with
two hidden layers with

n1 =
⌈

n + n0 − 1
2

⌉
,

units in the first hidden layer and

n2 = n− n1 =
⌊

n− n0 + 1
2

⌋

hidden units in the second hidden layer.

The explicit formulas from Theorem 12 and 13 can be
used to calculate the number of necessary hidden units and
its distribution to one or two hidden layers if the number of
inputs and the desired approximation oder are given. For a
range of number of input signals and approximation order
these calculated values are displayed in Table I.

Remark 14 (Number of hidden layers):
1) It is never necessary to use more than one hidden layer,

as can be seen from Theorem 12, but if one uses only
the minimal number of hidden units from the second
case of Theorem 13 then one has to use two hidden
layers to obtain the necessary number of parameters.
The same stays true, if more than the minimal number
of hidden units are used; but if the number of hidden
units is large enough, then two hidden layers are not
necessary any more (although two hidden layers would
still be advantageous, because with the same number
of hidden units more parameters are available, which in
general will lead to better approximation results).

2) From the condition in Theorem 13 it follows that if only
linear or quadratic approximation should be achieved,
i.e. N ≤ 2, then only one hidden layer is needed. On
the other hand, if the desired approximation order is at
least twelve, then two hidden layers are needed (in the
sense of 1).

Remark 15 (Growth of the number of hidden units): If n0

is fixed then the necessary number of hidden units grows
polynomially in the approximation order N . Asymptotically
(big O notation), it is for the single hidden hidden layer
case n = O(Nn0) and for the two hidden layer case n =
O(Nn0/2). Analogously, if the approximation order N is fixed
then n = O(nN−1

0 ) for the single hidden layer case and
n = O(nN/2

0 ) for the two hidden layers case.

V. CONCLUSIONS

The main contribution of this paper is the explicit formula
for the necessary number of hidden units in a multilayer
perceptron to achieve a given approximation order. It was
also possible to decide how many hidden layers should be
used. It turns out that more than two hidden layers are not
needed, if one aims to minimize the number of necessary
hidden units. Depending on the number of inputs and the
desired approximation order one or two hidden layers should
be used. For high approximation orders (≥ 12) two hidden
layers should be used instead of one hidden layer, the same
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or
de

r number of inputs
1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

2 1 2 2 3 3 4 4 5 5
1 2 2 3 3 4 4 5 5

3 2 3 4 6 8 11 14 17 20
2 3 4 6 8 11 (10,4) (12,5) (14,5)

4 2 4 7 12 18 27 37 50 65
2 4 7 (7,4) (10,6) (13,8) (17,11) (21,14) (26,17)

5 2 6 12 21 36 58 88 129 182
2 6 (6,4) (10,7) (15,10) (20,15) (27,20) (35,27) (43,35)

6 3 7 17 35 66 116 191 301 455
3 (4,3) (8,6) (13,10) (20,16) (29,24) (40,34) (53,46) (69,61)

7 3 9 24 55 114 215 382 644 1040
3 (5,3) (10,7) (17,13) (27,22) (40,35) (57,51) (79,71) (106,97)

8 3 12 33 83 184 376 715 1287 2210
3 (6,4) (12,9) (21,17) (35,30) (53,48) (79,72) (112,105) (154,146)

9 4 14 44 120 286 626 1272 2431 4420
4 (6,5) (14,11) (25,22) (43,39) (69,64) (106,99) (154,147) (219,211)

10 4 17 58 167 429 1001 2161 4376 8398
4 (7,5) (16,13) (30,27) (53,49) (88,83) (138,132) (208,200) (302,294)

11 4 20 73 228 624 1547 3536 7559 15270
4 (8,6) (18,15) (36,32) (65,60) (110,104) (177,170) (273,266) (408,400)

12 5 23 91 304 884 2321 5599 12597 26721
(3,2) (8,7) (20,18) (41,38) (77,73) (135,129) (223,217) (353,346) (541,532)

13 5 27 112 397 1224 3392 8614 20349 45220
(3,2) (9,8) (22,20) (47,44) (91,87) (163,158) (277,270) (450,442) (704,695)

14 5 30 136 510 1662 4845 12920 31977 74290
(3,2) (10,8) (25,22) (54,50) (106,102) (195,190) (340,333) (564,556) (902,894)

15 6 34 164 646 2215 6783 18950 49032 118864
(3,2) (10,9) (27,25) (61,57) (123,119) (231,226) (411,405) (699,691) (1142,1133)

TABLE I
NECESSARY NUMBER OF HIDDEN UNITS FOR AN MLP WITH 1 TO 9 INPUTS AND DESIRED APPROXIMATION ORDER 1 TO 15. THE FIRST ENTRY IS THE
NECESSARY NUMBER OF HIDDEN UNITS FOR AN MLP WITH ONE HIDDEN LAYER, THE SECOND ENTRY IS THE NECESSARY NUMBER OF HIDDEN UNITS

FOR A TWO HIDDEN LAYERS MLP, IF THE SECOND ENTRY CONSISTS ONLY OF ONE VALUE, THEN A SECOND LAYER IS NOT NEEDED.

is true for smaller approximation order and a sufficiently high
number of inputs, as long as the approximation order is at least
three. Interestingly, for linear and quadratic approximation
only one hidden layer is needed.

The correlation between approximation order and approxi-
mation accuracy was studied. A sufficient condition was given
for the activation function for which a high approximation
order implies a high approximation accuracy, or in other words
when a good local approximations also yields a good global
approximation.

Although the important question “How many hidden units
are necessary?” was answered in a satisfying manner, there
are other important questions which remain open. The next
obvious question considers the sufficient number of hidden
units and under which conditions the number of necessary
hidden units, calculated in this paper, is also sufficient. Another
important question is how an MLP must be trained to achieve
a good approximation order.
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APPENDIX

Proof of Proposition 6

From the definition of f (n)(0) (see, e.g., [13]) it follows
that ∣∣f (n)(0)xn

∣∣ ≤ ∥∥f (n)(0)
∥∥‖x‖n ≤ ∥∥f (n)(0)

∥∥

for all n ∈ N, x ∈ K = [−1, 1]n0 and ‖x‖ =
max

{|x1|, |x2|, . . . |xn0 |
}

. Let ε > 0, then there exists,
because of (2), an Nε ∈ N such that

∞∑

k=Nε+1

1
k!
‖f (k)(0)‖ < ε.

From (1) it follows that for all x ∈ K and all N ∈ N
∣∣TN{f}(x)− f(x)

∣∣ =

∣∣∣∣∣
∞∑

k=N+1

f (k)(0)
k!

xk

∣∣∣∣∣ ,

hence

∣∣TN{f}(x)− f(x)
∣∣ ≤

∞∑

k=N+1

1
k!
‖f (k)(0)‖ < ε

for all N ≥ Nε. qed

Proof of Proposition 7

For the proof of this proposition a lemma is needed:
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Lemma 16: Let σ : R → R be a activation function
which fulfills the assumption from Proposition 7 and let
f1, f2, . . . , fm : K → R be nicely analytical functions for
some m ∈ N and K = [−1, 1]n0 . The function

g : K → R, x 7→ σ
(
w1f1(x)+w2f2(x)+. . .+wmfm(x)+θ

)
,

where w1, w2, . . . , wm, θ ∈ R, is then also nicely analytical.
The proof of Lemma 16 is technically and is carried out in

the appendix of [16, Lem. 4.5.3].

For the proof of Proposition 7 consider Definition 2 for the
MLP function, then it follows inductively by Lemma 16 that
the mappings x 7→ zi,j for each 1 ≤ i ≤ h and 1 ≤ j ≤ ni

are nicely analytical and hence the MLP function x 7→ y is
also nicely analytical, because the output activation function
is the identity function and fulfills therefore the assumptions
of Lemma 16. qed

Proof of Lemma 8

The main ideas of the proof are based on [17].
The space Rm is Lindelöf (i.e. every open covering has a
countable subcovering, see, e.g., [18]) and hence U ⊆ Rm is
Lindelöf, too. The set

Rg :=

{
y ∈ Rn

∣∣∣∣∣
∀x ∈ g−1(y) :
g′(x) : Rm → Rn is surjective

}

is by Sard’s Theorem for Manifolds, [18, Thm. 3.6.8], a count-
able intersection of open dense sets. Note that for y /∈ g(U)
trivially y ∈ Rg . On the other hand, for every y ∈ g(U)
and x ∈ g−1(y) the linear mapping g′(x) is not surjektive,
because m < n. Hence g(U) ∩Rg = ∅, i.e. g(U) ⊆ Rn\Rg.
The complement of a countable intersection of open dense sets
is a countable union of closed sets with empty interior, hence
g(U) ⊆ M :=

⋃
i∈N Ci, where Ci ⊆ Rn are closed sets with

empty interior.
Seeking a contradiction assume g(U) = Rn, which implies
that M = Rn.
The space Rn is locally compact and the Baire Category
Theorem, [18, Thm. 1.7.3], yields that Rn is a Baire space,
i.e. every countable intersection of open and dense subsets is
dense. For i ∈ N the subsets Oi := Rn\Ci are open and
dense and hence

⋂
i∈NOi is dense in Rn. This yields the

contradiction

∅ = Rn\M = Rn\
⋃

i∈N
Ci =

⋂

i∈N
Oi.

qed

Proof of Corollary 9

Consider an MLP with parameters P (weights and bi-
ases), then the MLP function fMLP : K → R depends on
the specific chosen parameters P, in particular the Taylor
polynomial TN{fMLP} for some N ∈ N depends on P.
Denote with NP the dimension of P, i.e., the number of
parameters in the considered MLP. Denote furthermore the
maximum number of coefficients of the Taylor polynomial
TN{fMLP} with NT . Let CT : RNP → RNT be the function

which maps the parameters P to the coefficient vector of the
Taylor polynomial TN{fMLP}, i.e. CT (P) = (b1, b2, . . . , bNT ),
where b1, . . . , bNT are the NT coefficients of TN{fMLP}.
The condition that the considered MLP can approximate any
sufficiently smooth function with order N is then equivalent
to the condition that the function CT is surjective.

Therefore, the assertion of Corollary 9 is NP ≥ NT . In
view of Lemma 8, it only remains to show that the function
RNP → RNT , P 7→ CT (P) is differentiable, because then
surjectivity of P 7→ CT (P) implies NP ≥ NT .

Write TN{fMLP}(x) =
∑
|I|≤N bI(P)xI , where I =

(i1, i2, . . . , in0) ∈ Nn0 , |I| = i1 + i2 + . . . + in0 and
xI = x1

i1x2
i2 · · ·xn0

in0 , then the Taylor coefficient function
CT consists of the scalar valued functions P 7→ bI(P) ∈ R
for indexes I ∈ Nn0 with |I| ≤ N . It suffices now to show
that for each I ∈ Nn0 with |I| ≤ N the function P 7→ bI(P)
is differentiable.

To highlight that fMLP depends on P write fMLP(P,x)
instead of fMLP(x). It is

bI(P) = cI
∂|I|fMLP(P, · )

(∂x)I
(0),

where cI is some multiple which results from the symmetries
of the partial derivatives and

(∂x)I = ∂i1x1∂
i2x2 · · · ∂in0 xn0 ,

if I = (i1, i2, . . . , in0). From the definition of the MLP
function (see Definition 2) and the assumption that σ ∈
C∞(R → R) it follows that the MLP function (P,x) 7→
fMLP(P,x) is not only arbitrarily often continuously differ-
entiable with respect to x, but also with respect to P. This
implies that the function (P,x) 7→ fMLP(P,x) is arbitrarily
often differentiable. In particular, there exists for every par-
tial derivative a further partial derivative. The derivative of
P 7→ bI(P) is simply the partial derivative (with respect to P)
of cI

∂|I|fMLP(P, · )
(∂x)I (0), which itself is a partial derivative of the

MLP function (P,x) 7→ fMLP(P,x) with respect to x. Hence
P 7→ bI(P) is differentiable, which implies differentiability
of CT . qed

Proof of Lemma 10
Consider some multivariable polynomial

(x1, x2, . . . , xn) 7→ p(x1, x2, . . . , xn) with n ∈ N variables
and degree N ∈ N and write

p(x1, x2, . . . , xn)
= p1(x1, x2, . . . , xn−1) + xnp2(x1, x2, . . . , xn),

where p1 consists of all monomials of p without the variable
xn and p2 consists of all remaining monomials divided by xn.
Let C(n,N) be the number of coefficients of a polynomial
with n variables and degree N then, by the above splitting,
the following recursive formula holds

C(n,N) = C(n− 1, N) + C(n,N − 1)

with initial conditions C(n, 0) = 1 and C(0, N) = 1. The

term
(

N + n
n

)
fulfills the recursive formula and its initial

conditions and hence the lemma is shown. qed
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Proof of Proposition 11

It follows from Definition 1 that the number of parame-
ters NP(h,n) of an MLP with h hidden layers and n =
(n0, n1, . . . , nh) units is

NP(h,n) =
h∑

i=1

(ni−1 + 1)ni + nh. (3)

Let
N∗

P(n0, n) := max
h∈N,|n|=n

NP(h,n),

where |n| = n1 + n2 + . . . + nh and the maximum is only
taken over n = (n0, n1, . . . , nh), where n1, ..., nh > 0 and
n0 > 0 is fixed. The number N∗

P(n0, n) is the maximum
number of parameters which an MLP with n hidden units
can have, regardless how the hidden units are distributed in
the different hidden layers. For the calculation of N∗

P(n0, n)
consider first the case that the number of hidden layers is fixed:

Nh
P(n0, n) := max

|n|=n
NP(h,n).

Clearly, by (3),

N1
P(n0, n) = (n0 + 1)n + n.

For h = 2 the n hidden units can be distributed to the two
hidden layers such that n2 units are in the second and n1 =
n− n2 units are in the first hidden layer. Therefore, by (3),

N2
P(n0, n) = max

1≤n2≤n−1

(
(n0+1)(n−n2)+(n−n2+1)n2+n2

)
.

To calculate N2
P(n0, n) consider for fixed n, n0 ∈ N the

function

m : R→ R, x 7→ −x2 + x(n− n0 + 1) + (n0 + 1)n,

then N2
P(n0, n) = max1≤n2≤n−1 m(n2). The real valued

function m has a unique maximum at

xmax =
n− n0 + 1

2
.

Since m is a parabola, N2
P(n0, n) is maximal for n2 =⌊

n−n0+1
2

⌋
and n2 =

⌈
n−n0+1

2

⌉
. Note that the function value

is the same for both points. The optimal value n2 is only valid,
if 1 ≤ n2 ≤ n − 1 otherwise one of the hidden layers would
be empty. Since n ≥ 1 and n0 ≥ 0 this yields for the optimal
number n∗2 of hidden units in the second layer:

n∗2 = max
{⌊

n− n0 + 1
2

⌋
, 1

}
.

Note that with m ≡ n + n0 mod 2 it is
⌊

n−n0+1
2

⌋
=

n−n0+m
2 . Hence

N2
P(n0, n)

=

{
(n+n0+3)2+m−1

4 − 2(n0 + 1) if n ≥ n0 + 2−m,

(n0 + 1)(n− 1) + n− 1 otherwise.

For the first case the maximum is obtained for n2 =
⌊

n−n0+1
2

⌋
and in the second case for n2 = 1. For the latter case it is
clearly better to take only one hidden layer, because with one

hidden layer more parameters can be obtained. Evaluating the
inequality N2

P(n0, n) > N1
P(n0, n) yields

N2
P(n0, n) > N1

P(n0, n) ⇔ n > n0 + 1 +
√

4n0 + 1−m,

which is the statement of the proposition (note that
n > n0 +1+

√
4n0 + 1−m implies n ≥ n0 +2−m), if also

it is shown that more than two hidden layers are not needed.

It is

N3
P(n0, n) = max

n2,n3
NP

(
3, (n0, n− n2 − n3, n2, n3)

)

and by (3)

NP

(
3, (n0, n− n2 − n3, n2, n3)

)

= (n0 + 1)n + n2(n− n0 − n2 − 1)− n3(n0 − 1)

Clearly, the value of n3 must be chosen minimal to maximise
NP

(
3, (n0, n− n2 − n3, n2, n3)

)
, because n0 ≥ 1 (if n0 = 1

then the value of the maximum does not depend on n3 and
it can also be chosen to be minimal to obtain the maximal
value). Hence the optimal value n∗3 is

n∗3 = 1

and

N3
P(n0, n)

= max
n2

N3
P

(
3, (n0, n− n2 − 1, n2, 1)

)

= max
n2

(n0 + 1)(n− n2) + (n− n2)n2 − n0 + 1

≤ max
n2

(n0 + 1)(n− n2) + (n− n2 + 1)n2 + n2

= N2
P(n0, n)

Hence a two hidden layers MLP with the same number of
hidden units as a three hidden layers MLP has always at least
the same number of parameters and therefore three hidden
layers are not needed if one aims for maximizing the number
of parameters with respect to the number of hidden units.
Clearly, more then three hidden layers will yield an analogous
result, i.e. to achieve a maximum number of parameters for
a given number of hidden units only MLPs with one or two
hidden layers must be considered. qed

Proof of Theorem 12

By Corollary 9, Lemma 10 and Proposition 11 for the
necessary number n of hidden units the following inequality
is necessary (

N + n0

n0

)
≤ n(n0 + 2),

which implies the result of the theorem. qed

Proof of Theorem 13

From Corollary 9, Lemma 10 and Proposition 11 it follows
that the following inequality must be fulfilled for the necessary
number n of hidden units:

N∗
P(n0, n) ≥

(
N + n0

n0

)
,
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where

N∗
P(n0, n) =

{
(n0 + 2)n, if n ≤ n0+1+

√
4n0+1−m,

(n+n0+3)2+m−1
4 − 2(n0 + 1), otherwise,

is the maximum number of network parameters and m = n0+
n mod 2. Consider the function H : R→ R defined by

H(x) =

{
(n0 + 2)x, if x ≤ n0 + 1 + 2

√
n0,

(x+n0+3)2

4 − 2(n0 + 1), otherwise,

which is continuous, strictly increasing and fulfills H(n) ≥
N∗

P(n0, n) and the necessary number n of hidden units must

therefore fulfill H(n) ≥
(

N + n0

n0

)
. Since H is unbounded

there exists a unique x∗ ∈ R with H(x∗) =
(

N + n0

n0

)
and

the inequality H(n) ≥
(

N + n0

n0

)
is equivalent with n ≥ x∗.

Simple calculations show, that if
(
N + n0

)
n0 ≤ (n0 + 2)(n0 + 1 + 2

√
n0)

then x∗ =
(

N + n0

n0

)/
(n0+2), otherwise x∗ is the solution

of (
N + n0

n0

)
=

(x + n0 + 3)2

4
− 2(n0 + 1)

which is

x∗ = 2

√(
N + n0

n0

)
+ 2(n0 + 1)− n0 − 3.

This is the result of the theorem. qed
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Birkhäuser Verlag, 2001.
[14] ——, Analysis I. Basel - Boston - Berlin: Birkhäuser Verlag, 2001.
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