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Abstract— We study observability of switched differential-
algebraic equations (DAEs) for arbitrary switching. We present
a characterization of observability and a related property called
determinability. These characterizations utilize the results for
the single-switch case recently obtained by the authors. Further-
more, we study observability conditions when only the mode
sequence of the switching signal (and not the switching times)
are known. This leads to necessary and sufficient conditions for
observability and determinability. We illustrate the results with
illustrative examples.

I. INTRODUCTION

In this paper, we study observability of a class of switched
systems where the dynamical subsystems are modeled as
differential-algebraic equations (DAEs):

Eσẋ = Aσx+Bσu,

y = Cσx,
(1)

where σ : R → N is the switching signal (R, N denote
the real, natural numbers, resp.), and Ep, Ap ∈ Rn×n,
Bp ∈ Rn×du , Cp ∈ Rdy×n, for p ∈ N. Usually, ordinary
differential equations are used to model the dynamical be-
havior of a system. However, the evolution of the states in
a physical system may be constrained, e.g., currents and
voltages in electrical circuits due to Kirchoff’s laws, or
position variables in coupled mechanical systems. In the
modeling of such physical systems, it is important to take
into account the algebraic constraints imposed on the state
variables alongside some differential equations that govern
the evolution of these state variables and we therefore believe
that a system’s description as in (1) is important for modeling
many phenomena.

This paper is a continuation of our work [1] where
observability of (1) for a single switch was investigated.
We are able to extend these results to the case of general
switching signals and our main result is the characterization
of observability of switched DAEs (1) with a fixed switching
signal (Theorem 10). We also present a necessary and a
sufficient condition for observability when only the mode
sequence of the switching signal is known (and not the
switching times). Alongside these results we also study the
weaker property of determinability (called “forward observ-
ability” in [1]) which seems to be more suitable with respect
to observer design (see [2] in a similar context).
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II. PRELIMINARIES

In the following, we collect important properties and
definitions for a matrix pair (E,A). We only consider regular
matrix pairs, i.e. for which the polynomial det(sE − A) is
not the zero polynomial. A very useful characterization of
regularity is the following well-known result.

Proposition 1 (Regularity and quasi-Weierstrass form):
A matrix pair (E,A) ∈ Rn×n × Rn×n is regular if, and
only if, there exist invertible matrices S, T ∈ Rn×n such
that

(SET, SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, (2)

where J ∈ Rn1×n1 , 0 ≤ n1 ≤ n, is some matrix and N ∈
Rn2×n2 , n2 := n− n1, is a nilpotent matrix. C
In view of [3], we call the decomposition (2) quasi-
Weierstrass form. An easy way to calculate the transforma-
tion matrices S and T for (2) is to use the following so-called
Wong sequences [4], [3]:

V0 := Rn, Vi+1 := A−1(EVi), i = 0, 1, · · ·
W0 := {0}, Wi+1 := E−1(AWi), i = 0, 1, · · ·

The Wong sequences are nested and get stationary after
finitely many steps. The limiting subspaces are defined as
follows:

V∗ :=
⋂
i

Vi, W∗ :=
⋃
i

Wi.

For any full (column) rank matrices V,W with imV = V∗
and imW = W∗, the matrices T := [V,W ] and S :=
[EV,AW ]−1 are invertible and (2) holds.

Based on (2) we define the following “projectors”.
Definition 2 (Consistency, differential and impulse projectors):

Consider the regular matrix pair (E,A) with corresponding
quasi-Weierstrass form (2). The consistency projector of
(E,A) is given by

Π(E,A) = T

[
I 0
0 0

]
T−1,

the differential projector is given by

Πdiff
(E,A) = T

[
I 0
0 0

]
S,

and the impulse projector is given by

Πimp
(E,A) = T

[
0 0
0 I

]
S,



where the block sizes correspond to the ones in (2). C
Note that only the consistency projector is a projector

in the usual sense (i.e. Π(E,A) is an idempotent matrix);
whereas Πdiff

(E,A) and Πimp
(E,A) are not projectors because, in

general, Πdiff
(E,A)Π

diff
(E,A) 6= Πdiff

(E,A) and the same holds for
Πimp

(E,A). Let

C(E,A) :=
{
x0 ∈ Rn

∣∣ ∃x ∈ C1 : Eẋ = Ax ∧ x(0) = x0
}

be the consistency space of the DAE Eẋ = Ax, where C1 is
the space of differentiable functions x : R → Rn. Then the
following observations hold [3]:

1) All solutions x∈C1 of Eẋ = Ax evolve within C(E,A),
2) C(E,A) = V∗, i.e. the first Wong-sequence converges

to the consistency space,
3) im Π(E,A) = V∗ = C(E,A) and ker Π(E,A) = W∗, i.e.

the consistency projector maps onto the consistency
space along W∗.

The following lemma motivates the name of the differential
projector.

Lemma 3 ([1, Lem. 3]): Consider the DAE Eẋ = Ax
with regular matrix pair (E,A). Then any solution x ∈ C1
of Eẋ = Ax fulfills

ẋ = Πdiff
(E,A)Ax =: Adiffx. C

For understanding the role of the consistency projector
and for studying impulsive solutions, we consider the space
of piecewise-smooth distributions DpwC∞ from [5] as the
solution space; that is, we seek a solution x ∈ (DpwC∞)n

to the following initial-trajectory problem (ITP):

x(−∞,0) = x0(−∞,0)

(Eẋ)[0,∞) = (Ax)[0,∞),
(3)

where x0 ∈ (DpwC∞)n is some initial trajectory, and fI
denotes the restriction of a piecewise-smooth distribution f
to an interval I. In [5], [6] it is shown that the ITP (3) has
a unique solution for any initial trajectory if, and only if,
the matrix pair (E,A) is regular. In particular, the following
result concerning the consistency projector holds.

Lemma 4 (Role of consistency projector, [6, Thm. 4.2.8]):
Consider the ITP (3) with regular matrix pair (E,A) and
with arbitrary initial trajectory x0 ∈ (DpwC∞)n. Let Π(E,A)

be the consistency projector of (E,A), then there exists a
unique solution x ∈ (DpwC∞)n and

x(0+) = Π(E,A)x(0−). C
Finally, the role of the impulsive projector becomes clear

when expressing the impulsive part, denoted by x[0], of the
distributional solution x of the ITP (3).

Lemma 5 ([1, Cor. 5]): Consider the ITP (3) with regular
matrix pair (E,A) and corresponding impulse and consis-
tency projectors Πimp

(E,A), Π(E,A). Let Eimp := Πimp
(E,A)E then,

for the unique solution x ∈ (DpwC∞)n,

x[0] =

n−1∑
i=0

(Eimp)i+1(Π(E,A) − I)x(0−)δ
(i)
0 ,

where δ(i)0 denotes the i-th (distributional) derivative of the
Dirac-impulse δ0 at t = 0. C

Altogether, invoking an inductive argument, these results
guarantee existence and uniqueness of (distributional) solu-
tions of the switched DAE (1) provided each matrix pair
(Ep, Ap) is regular and the switching signal does not have
a finite accumulation point of switching times [6].

III. OBSERVABILITY CONDITIONS

The concepts introduced in the previous section are now
utilized to obtain necessary and sufficient conditions for
observability and determinability of switched DAEs.

A. Observability definitions

Definition 6 (Observability): The switched DAE (1) with
some fixed switching signal σ, is called (globally) observable
if for every pair of inputs and outputs (y, u) ∈ (DpwC∞)dy+du

there exists at most one x ∈ (DpwC∞)n which solves (1). C
The following result will be helpful for simplifying the

analysis.
Lemma 7 (Observability of zero, [1, Prop. 7]): The

switched DAE (1) is observable if, and only if, y ≡ 0 and
u ≡ 0 implies x ≡ 0. C

The above result justifies that we can ignore the input
when studying observability of (1); hence in what follows,
we can restrict our attention to the homogeneous switched
DAE:

Eσẋ = Aσx, y = Cσx. (4)

The above observability definition aims at recovering the
state also in the past, however in certain applications (e.g.
observer design) one might only be interested in determin-
ing the state from some time onwards. This motivates the
following definition.

Definition 8 (Determinability): The switched DAE (1)
is called determinable if for every pair of triplets
(x1, u1, y1), (x2, u2, y2) ∈ (DpwC∞)n+du+dy which solve (1)
there exists t ≥ 0 such that the implication (u1, y1) =
(u2, y2)⇒ x1(t,∞) = x2(t,∞) holds. C

Similar to observability we can restrict our attention to
zero-determinability.

Proposition 9 (Determinability of zero): The switched
DAE (1) is determinable if, and only if, y ≡ 0 and u ≡ 0
implies x(t,∞) ≡ 0 for some t ≥ 0. C

Proof: Necessity is obvious. Assume now (1) is not
determinable, i.e. there exist external signals u and y and
corresponding solutions x1 and x2 with (x1 − x2)(t,∞) 6= 0
for all t ≥ 0. By linearity, x := x1 − x2 solves Eσẋ = Aσx
and Cσx = Cσx1 − Cσx2 = y − y = 0, hence y ≡ 0 and
u ≡ 0 does not imply x(t,∞) = 0 for any t ≥ 0.

B. The single switch case

We recapitulate the result of [1] on the single switch case
which are essential for the results on arbitrary switching.
Therefore, we consider in this subsection the switching signal

σ(t) = 0 for t < 0 and σ(t) = 1 for t ≥ 0. (5)



That is, we only consider one switch from some initial
subsystem given by (C−, E−, A−) := (C0, E0, A0) – active
before the switch – to some other subsystem given by
(C+, E+, A+) := (C1, E1, A1) that is active after the switch.
By regularity of the matrix pairs (E±, A±), it is easily seen
that for any solution x ∈ (DpwC∞)n of the switched DAE
(4) with the single switch switching signal (5) the following
equivalence holds:

x ≡ 0 ⇔ x(0−) = 0.

For the characterization of observability and determinability
for the single switch case, the following four subspaces play
an essential role:
Consistency space. Independently of the observed output

it holds that x(0−) ∈ C− , where C− := C(E−,A−)

denotes the consistency space of the DAE corresponding
to the matrix pair (E−, A−).

Left-unobservable space. If y(−∞,0) ≡ 0 then y(i)(0−) =
0 for all i ∈ N, hence, invoking Lemma 3, we have
x(0−) ∈ kerO− , where1

O− := [C−/C−A
diff
− / · · · /C−(Adiff

− )n−1], (6)

and kerO− denotes the unobservable space of the ODE
ẋ = Adiff

− x, y = C−x.
Projected right-unobservable space. Analogously as

above, if y(0,∞) ≡ 0 then x(0+) ∈ kerO+, where
O+ is defined as in (6). Due to Lemma 4, we obtain
x(0−) ∈ kerO−+ , where

O−+ := O+Π(E+,A+).

Impulse unobservable space. Finally, due to Lemma 5,
from the equality 0 = y[0] = C+x[0] it follows that

x(0−) ∈ kerOimp−
+ , where

Oimp−
+ := Oimp

+ (Π(E+,A+) − I)

and

Oimp
+ := [C+E

imp
+ /C+(Eimp

+ )2/ · · · /C+(Eimp
+ )n2−1].

With these four subspaces, a complete characterization of
observability is possible.

Theorem 10 (Single switch result [1, Cor. 13]):
Consider the switched DAE (4) and the single switch
switching signal (5). Then the unobservable subspace for
x(0−) is given by

M := C− ∩ kerO− ∩ kerO−+ ∩ kerOimp−
+ ,

i.e., the following equivalence holds for all solutions x ∈
(DpwC∞)n of (4):

y ≡ 0 ⇔ x(0−) ∈M.

In particular, the switched DAE (1) is observable if, and only
if, M = {0}. Furthermore, (1) is determinable if, and only
if, Π(E+,A+)M = {0}. C

1By [M1/M2/ . . . /Mk] we denote the matrix which is obtained by
stacking the matrices M1,M2, . . . ,Mk (with the same number of columns)
over each other.

C. Multiple switching main results

So far, we have studied switched DAEs with a single
switching instant. For switched DAEs (4) with more than two
subsystems and multiple switchings, we build on the results
of the previous subsection to obtain a characterization for the
general case. For notational convenience, we assume that the
switching signal σ : R→ N ∪ {−1} is given by:

σ(t) = −1 for t < t0 := 0,

σ(t) = k on [tk, tk+1), k ∈ N,
(7)

where tk ∈ R, k ∈ N, denote the (ordered) switching times
of σ with tk → ∞ as k → ∞. In particular, we assume
that σ has no switches before the initial time t0 := 0. The
latter is a slight restriction of generality as we do not allow
accumulation of switching times towards −∞. Otherwise
this is not a restriction of generality as we do of course
allow (Ek, Ak, Ck) = (El, Al, Cl) for any k, l ∈ N.

Adopting the notation from the previous section we let,
for k ∈ N ∪ {−1},

Ck := C(Ek,Ak),

Ok := [Ck/CkA
diff
k / · · · /Ck(Adiff

k )n−1],

Oimp
k := [CkE

imp
k /Ck(Eimp

k )2/ · · · /Ck(Eimp
k )n2−1].

With O−k := OkΠk, and Oimp−
k := Oimp

k (Πk − I), where
Πk := Π(Ek,Ak) is the consistency projector of the k-th
subsystem, we define Mk, k ∈ N, as:

Mk := Ck−1 ∩ kerOk−1 ∩ kerO−k ∩ kerOimp−
k ,

According to Theorem 10 we callMk the locally unobserv-
able subspace at the k-th switching instance. The following
example shows that the existence of k ∈ N with Mk =
{0}, i.e. local observability, is not necessary for (global)
observability.

Example 11 (Mk = {0} not necessary, [1, Ex. 20]):
Consider a switched DAE (4) excited by the switching
signal

σ(t) =


−1, t ∈ (−∞, 0),

0, t ∈ [0, π2 ),

1, t ∈ [π2 ,∞),

with modes given by the following matrices E−1 =[
0 0 0
0 1 0
1 0 0

]
, A−1 =

[
1 0 0
0 1 0
0 0 1

]
, C−1 = [ 0 0 1 ], E0 =

[
1 0 0
0 1 0
0 0 0

]
,

A0 =
[

0 1 0
−1 0 0
0 0 1

]
, C0 = [ 0 0 1 ] and (E1, A1, C1) =

(E−1, A−1, C−1).
Letting {e1, e2, e3} denote the natural basis vectors for

R3, it can be verified that (for details see [1])

M0 =M1 = span{e2}.

However, this switched DAE is observable as can be seen
from the explicit solution given by, for some a ∈ R,

x1(t) = a sin t · 1[0,π2 ),

x2(t) = ae2t · 1(−∞,0) + a cos t · 1[0,π2 ),

x3(t) = −aδπ
2

= y(t),



where 1I denotes the indicator function of the interval I. For
an identically zero output, the impulsive part of the output at
the second switching instant enforces a = 0 and this makes
x ≡ 0. C

Concerning the sufficiency ofMk = {0} for observability,
observe first that clearly M0 = {0} makes the whole
switched DAE observable as x(0−) can be deduced from
the information at the first switch alone. On the other hand
Mk = {0}, k > 0, only guarantees that x(tk−) can be
deduced from the k-th switch but, in general, this does not
allow for the deduction of x(0−).

To use the information obtained by each individual switch
given by Mk, we will use the following iteration, m ∈ N,
k = m− 1, . . . , 0:

Nm
m :=Mm,

Nm
k :=Mk ∩Π−1k (e−A

diff
k τkNm

k+1),
(8)

where τk := tk+1 − tk is the duration of mode k. The
intuition is that Nm

k , k < m, is the unobservable subspace
for x(tk−) based on the knowledge of the observed output
at the switching time tk, given by Mk and the information
obtained from the future switching times up to tm given by
Nm
k+1 together with the known flow on the interval [tk, tk+1)

and the consistency projector Πk at tk. With this subspace
iteration we can now characterize observability of switched
DAEs.

Theorem 12 (Observability characterization): Consider
the switched DAE (1) with switching signal σ as in (7).
For each positive integer m ∈ N, define the sequence Nm

k ,
for 0 ≤ k ≤ m, according to (8). The switched system is
globally observable if, and only if, there exists an m ∈ N
such that

Nm
0 = {0}. (9)

Proof: Sufficiency. We show that the identically zero
output can only be produced by x ≡ 0. Fix m such
that (9) holds. Assume that y ≡ 0 on (−∞,∞); then
according to Theorem 10, x(tm−) ∈ Mm = Nm

m . We next
apply the inductive argument to show that x(tk−) ∈ Nm

k

for 0 ≤ k ≤ m. Assume that x(tk−) ∈ Nm
k ; then,

invoking Lemma 3, x(tk−1+) ∈ e(−Adiff
k τk)Nm

k . This implies
that x(tk−1−) ∈ Π−1k e(−A

diff
k τk)Nm

k . Zero output on the
interval (tk−2, tk) implies that x(tk−1−) ∈Mk−1 and thus
x(tk−1−) ∈ Mk−1 ∩ e(−A

diff
k τk)Nm

k = Nm
k−1. As a result,

x(0−) ∈ Nm
0 = {0}, i.e., x(0−) = 0; regularity of the

matrix pairs (Ek, Ak), k ∈ N ∪ {−1} implies that x ≡ 0.
Necessity. Assume that Nm

0 6= {0} for all m ∈ N. Since
Nm+1
m ⊆ Nm

m it follows that Nm+1
k ⊆ Nm

k for all m ∈ N
and 0 ≤ k ≤ m. Let Nk :=

⋂
m≥kNm

k , then, by finite
dimensionality of Rn,

N0 6= {0}.

We will show that for all initial values x0 ∈ N0 the unique
non-zero solution x ∈ (DpwC∞)n of the switched DAE

Eσẋ = Aσx, x(0−) = x0

fulfills y = Cσx = 0, which implies unobservability. To this
end, we first show the following implication, 0 ≤ k ≤ m:

x(tk−) ∈ Nk ⇒ x(tk+1−) ∈ Nk+1. (10)

Assume x(tk−) ∈ Nk. Since x(tk+) = Πk+1x(tk−) and
x(tk−) ∈ Nm

k for any m ≥ k + 1, it follows that

x(tk+1−) = eA
diff
k τkx(tk+) = eA

diff
k τkΠkx(tk−)

∈ eA
diff
k τkΠkNm

k

⊆ eA
diff
k τk

(
ΠkMk ∩ e−A

diff
k τkNm

k+1

)
⊆ Nm

k+1 .

Therefore, implication (10) is shown and an inductive argu-
ment gives x(tk−) ∈ Nk for all k ∈ N.

For all k ∈ N ∪ {−1}, x(tk+1−) ∈ Nk+1 ⊆ Mk+1 ⊆
kerOk, i.e. x evolves on (tk, tk+1) within the unobservable
space of the k-th mode, where t−1 := −∞. This implies
y(tk,tk+1) ≡ 0. Finally, y[tk] = 0 because x(tk−) ∈ Nk ⊆
Mk ⊆ kerOimp−

k . Altogether, we have shown that x0 ∈ N0

implies y ≡ 0 which concludes the proof.
Remark 13 (Finite number of modes): Note that even in

the case that there are only finitely many possible modes for
the switched DAE (1), there is no upper bound on m (inde-
pendent of the switching signal) for condition (9), because
the “essential” mode which makes the whole switched DAE
observable might appear arbitrarily late.

Example 14 (Example 11 revisited): Consider again the
switched DAE from Example 11. We calculate

N 1
1 =M1 = span{e2}

and, invoking Adiff
0 =

[
0 1 0
−1 0 0
0 0 0

]
, e−A

diff
0
π
2 =

[
0 −1 0
1 0 0
0 0 1

]
as well

as Π0 =
[
1 0 0
0 1 0
0 0 0

]
, we get

N 1
0 =M0 ∩Π−10 (e−A

diff
0
π
2 )N 1

1

= span{e2} ∩ span{e1, e3} = {0}.

Hence, condition (9) holds and we can verify that the
switched DAE is observable without analyzing the explicit
solution formulas. C

Note that, although Theorem 12 gives a characterization
of observability, it might not be so useful in practice as
one does not know a priori how many switches are needed
for observability. In particular, if the switched system is
unobservable the check for unobservability runs indefinitely
as Nm

0 6= {0} for all m. Furthermore, for large m the
calculation of Nm

0 via (8) might take very long as one
always has to start with Nm

m = Mm and has to iterate
backwards from m to zero for each m. As already mentioned
in Section III-A observability basically aims at reconstructing
x(0−) from the observed output which explains why at
each new switching instance the obtained information must
be iterated back to the initial switch at t = 0. If one
only aims at determining the state in the future, then the
situation improves significantly. Towards this end, consider
the following sequence of subspaces:



Q0 := Π0M0,

Qk+1 := Πk+1(Mk+1 ∩ eA
diff
k τkQk), k ∈ N.

(11)

The intuition behind this sequence of subspaces is as follows:
The subspace Qk contains all undeterminable states at the
k-th switching instance where we use all the knowledge
up to the k-th switching instance. At the next switching
instance we propagate forward the information from Qk
and intersect this with the locally unobservable subspace
Mk+1. Using then the consistency projector Πk+1 gives
the next undeterminable subspace Qk+1. This procedure is
significantly different to the subspace iteration in (8) as
it is not necessary to iterate back in time. We can now
characterize determinability with the help of the subspace
iteration (11).

Theorem 15 (Determinability characterization):
Consider the switched DAE (1) with switching signal
σ as in (7). For each m ∈ N define Qm according to (11).
The switched system is determinable if, and only if, there
exists an m ∈ N such that

Qm = {0}. (12)
Proof: Due to Proposition 9, it suffices to consider (4)

with a zero output.
Sufficiency. We will show that a zero output implies
x(tm+) = 0 hence, due to regularity of the involved
matrix pairs, x(tm,∞) ≡ 0. To this end, let x ∈ (DpwC∞)n

be a solution of (4) with zero output. Then Theorem 10
ensures that x(0+) ∈ Q0. We will inductively show that
x(tk+) ∈ Qk for all k ∈ N, i.e. assume the latter for some
k. As x(tk+1−) = eA

diff
k τkx(tk+) it follows that x(tk+1−) ∈

eA
diff
k τkQk. Theorem 10 yields that x(tk+1−) ∈Mk+1 hence

we have shown that x(tk+1+) = Πk+1x(tk+1−) ∈ Qk+1.
In particular, x(tm+) ∈ Qm = {0}.
Necessity. Determinability implies existence of m ∈ N such
that x(tm+) = 0 for all solution x of (4) with zero output.
Without restricting generality, we can assume that there are
no further switches after tm. Seeking a contradiction, assume
that Qm 6= {0}. We will now construct a solution x such
that its corresponding output is zero and x(tm+) 6= 0,
contradicting determinability. Choose xm+ ∈ Qm \ {0}, then
by definition there exists xm− ∈ Mm ∩ eA

diff
m−1τm−1Qm−1

such that xm+ = Πmx
m
− . Let xm−1+ := e−A

diff
m−1τm−1xm− then

xm−1+ ∈ Qm−1. We can repeat this procedure inductively
to obtain x0±, x

1
±, . . . , x

m
± ∈ Rn such that xk+ ∈ Qk,

xk− ∈ Mk, xk+ = Πkx
k
− for k = 0, 1, . . . ,m and xk− =

eA
diff
k−1τk−1xk−1+ for k = 1, 2, . . . ,m. Let x be the unique

solution of (4) with initial condition x(0−) = x0−. By
construction, x(tk±) = xk± for k = 0, 1, . . . ,m, in particular
x(tk−) ∈Mk which, by Theorem 10, ensures zero output on
(−∞, t1), (tk−1, tk+1), k = 1, 2, . . . ,m−1, and (tm−1,∞);
in particular, y[tk] = 0, for k = 0, 1, . . . ,m. Hence we
have obtained the sought contradiction as the constructed
x produces a zero output but x(tm+) = xm 6= 0.

Remark 16 (Artificial switches): It is always possible to
alter the switching signal σ as in (7) by adding an artificial

switch at tk′ ∈ (tk, tk+1) between the k-th and (k + 1)-th
switching instants, resulting in σ′ also given by (7) but now
with different matrices describing the modes:

(E′m, A
′
m, C

′
m) =

{
(Em, Am, Cm), for m ≤ k,
(Em-1, Am-1, Cm-1), for m ≥ k+1,

in particular, (E′k, A
′
k, C

′
k) = (E′k+1, A

′
k+1, C

′
k+1). Then,

as both descriptions describe the same switched DAE, the
observability conditions should not change. Indeed, with
some effort, one can show that (8) and (11) are invariant
with respect to adding artificial switches.

IV. OBSERVABILITY CONDITIONS FOR PARTLY
UNKNOWN SWITCHING SIGNAL

In the previous section we presented characterizations of
observability and determinability under the assumption that
the switching signal is known exactly a priori. In particular,
the conditions depend on the switching times and how long
each mode is active. In this section we want to weaken
this assumption by only assuming knowledge of the mode
sequence (and not of the switching times), i.e. we only know
that σ is a member of the set

Σseq :=

 σ : R→ N ∪ {−1}

∣∣∣∣∣∣∣
σ is given by (7) for
some switching times
0 = t0 < t1 < t2 < . . .


This will simplify the observability conditions as they will
not depend on the switching times tk. However, the price will
be that we will only get a sufficient and a necessary condition
for observability and we will show with examples that there
is indeed a gap between these conditions. For the formulation
of the results we will need the following notation.

Definition 17 (A-invariant subspaces): Let A ∈ Rn×n be
a matrix and V ⊆ Rn some subspace of Rn. Let

〈A | V 〉 := V +AV +A2V . . .+An−1V

be the smallest A-invariant subspace containing V and let

〈V |A 〉 := V ∩A−1V ∩A−2V ∩ . . . ∩A−(n−1)V

be the largest A-invariant subspace contained within V . C
Corollary 18 (Sufficient condition for observability):

Consider the DAE (1) with a switching signal σ ∈ Σseq. For
each m ∈ N, define the following sequence of subspaces,
using the notation from Section III-A:

Nm

m :=Mm

Nm

k−1 :=Mk−1 ∩Π−1k−1

〈
Adiff
k−1

∣∣∣Nm

k

〉
, k = m, · · · , 1.

The switched DAE (1) is observable if there exists an m ∈ N
such that

Nm

0 = {0}. C
Proof: Note that eAtV ⊆ 〈A | V 〉 for any matrix A,

any t ∈ R and any subspace V ⊆ Rn, hence Nm

k ⊇ Nm
k for

all m ≥ k ≥ 0. In particular, Nm

0 = {0} implies Nm
0 = {0}

and Theorem 12 ensures observability.
The condition in Corollary 18 is not necessary as the

following (ODE) example shows:



Example 19: Consider a switched system with mode se-
quence indexed as follows:

(E−1, A−1, C−1) =

(
I,

[
0 0
1 −1

]
, (1,−1)

)
,

(E0, A0, C0) =

(
I,

[
0 1
0 0

]
, (0, 0)

)
,

(E1, A1, C1) =

(
I,

[
0 0
0 0

]
, (1, 0)

)
= (Ek, Ak, Ck), k ≥ 2.

Easy calculations show that M0 = span {( 1
1 )}, M1 =

span {( 0
1 )} = Mm, m ≥ 2, and Nm

0 = N 1

0 = M0 6=
0. However, we will show that the switched system is
observable. For that purpose, consider any solution x with
zero output. Then x(0+) = x(0−) = (x01, x

0
1)> for some

x01 ∈ R. Furthermore, x(t1) = x(t1−) =
[
1 t1
0 1

]
x(0+) =

(x01(1 + t1), x01)> ∈M1. Hence, either x01 = 0 or t1 = −1.
The latter is not possible, because we assumed that the
switching times are in order, so x01 = 0 must hold and x ≡ 0
is shown. C

The above example, however, satisfies the following nec-
essary condition obtained as a corollary to Theorem 12.

Corollary 20 (Necessary condition for observability):
Consider the DAE (1) with a switching signal σ ∈ Σseq. For
each m ∈ N define the following sequence of subspaces:

Nm
m :=Mm

Nm
k−1 :=Mk−1 ∩Π−1k−1

〈
Nm
k

∣∣Adiff
k−1

〉
, k = m, · · · , 1.

If the switched DAE (1) is observable then there exists an
m ∈ N such that

Nm
0 = {0}.

Proof: Note that eAtV ⊇ 〈V |A 〉 for any matrix A,
any t ∈ R and any subspace V ⊆ Rn, hence Nm

k ⊆ Nm
k for

all m ≥ k ≥ 0. Now observability implies the existence of
some m ∈ N such that {0} = Nm

0 ⊇ N
m
0 .

In order to further illustrate the gap between the necessary
condition and the sufficient condition, consider the following
example where a system satisfies the necessary condition but
not the sufficient condition and is unobservable.

Example 21: Consider a switched system with mode se-
quence indexed as follows:

(E−1, A−1, C−1) =

(
I,

[
0 0
0 0

]
, (0, 0)

)
,

(E0, A0, C0) =

(
I,

[
0 1
−1 0

]
, (0, 0)

)
,

(E1, A1, C1) =

(
I,

[
0 0
0 0

]
, (1, 0)

)
,

= (Ek, Ak, Ck), k ≥ 2.

Easy calculations show that M0 = R2, M1 = span {( 0
1 )}

and N 1
0 = {0}. However, we will show that the switched

system is unobservable. Any solution x with x(0−) =
x0 ∈ R2 is given by x(t1) =

[
cos t1 sin t1
− sin t1 cos t1

]
x0 on

(0, t1) and remains constant afterwards. As a zero output
only constrains the first component of x on the interval

(t1,∞), we have the one-dimensional unobservable subspace{
(x01, x

0
2)>

∣∣ x01 cos t1 + x02 sin t1 = 0
}

for x(0−). Note
that by making the switching signal periodic we would
achieve observability. However, we haven’t investigated the
general implications of periodicity for the characterization
of observability so far and this remains to be done in future
work. C

We conclude this section with the corresponding sufficient
and necessary conditions for determinability, whose proofs
are analoge to the ones of Corollaries 18 and 20.

Corollary 22 (Conditions for determinability): Consider
the switched DAE (1) with a switching signal σ ∈ Σseq. For
each m ∈ N, define the following subspaces:

Q0
:= Π0M0,

Qk+1
:= Πk+1

(
Mk+1 ∩

〈
Adiff
k

∣∣∣Qk 〉) , k ∈ N,

and

Q0 := Π0M0,

Qk+1 := Πk+1

(
Mk+1 ∩

〈
Qk

∣∣∣Adiff
k

〉)
, k ∈ N.

The switched DAE (1) is determinable if there exists an m ∈
N such that

Qm0 = {0}.

On the other hand, if the switched DAE (1) is determinable
then there exists an m ∈ N such that

Qm0 = {0}. C

V. CONLUSIONS

We have presented a characterization of observability and
determinability of switched DAEs with known but arbitrary
switching signals. We also present a sufficient and a nec-
essary condition for observability and determinability when
only the mode sequence of the switching signal (and not the
switching times) is known. We have illustrated with examples
that there is a gap between these conditions.

As a future direction of research, the construction of
observers for switched DAEs is a topic that has not been
discussed so far and could be a potential application of the
results derived in this paper.
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