
Averaging for Switched DAEs: Convergence, Partial Averaging and Stability

Elisa Mostacciuoloa, Stephan Trennb, Francesco Vascaa

aDepartment of Engineering, University of Sannio, 82100 Benevento, Italy
bDepartment of Mathematics, University of Kaiserslautern, 67663 Kaiserslautern, Germany

Abstract

Averaging is a useful technique to simplify the analysis of switched systems. In this paper we present averaging results for the
class of systems described by switched differential algebraic equations (DAEs). Conditions on the consistency projectors are given
which guarantee convergence towards a non-switched averaged system. A consequence of this result is the possibility to stabilize
switched DAEs via fast switching. We also study partial averaging in case the consistency projectors do not satisfy the conditions
for convergence; the averaged system is then still a switched system, but is simpler than the original. The practical interest of the
theoretical averaging results is demonstrated through the analysis of the dynamics of a switched electrical circuit.
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1. Introduction

Hybrid systems encompass continuous and discrete behav-
ior, see e.g. Schaft and Schumacher (2000). A switched system
is a hybrid system consisting of a family of dynamical subsys-
tems and a policy that at each time instant selects the active sub-
system among a set of possible modes (Liberzon, 2003). The
selection policy is usually described by means of a switching
function, which here is assumed to be a function of time (in
contrast to state dependent switching).

In this paper we study switched systems whose modes are
given by linear differential algebraic equations (DAEs). Linear
DAEs are a natural way of modeling electrical circuits, sim-
ple mechanical systems or, in general, (linear) systems with ad-
ditional (linear) algebraic constraints (Kunkel and Mehrmann,
2006). If this kind of systems change their model at some time
one obtains a switched system; for example one can add (ideal)
switches to an electrical circuit or allow for sudden structural
changes in mechanical systems. The potentially complex inter-
action between the modes dynamics and the switching signal
complicates the analysis of switched models. A possible ap-
proach to circumvent some of these difficulties, when switch-
ings occur at high frequencies, is to average the hybrid dynam-
ics over a time interval and to base the analysis and control
design on the simpler averaged system.

Averaging theory for switched systems has a big inter-
est in the control literature considering different approaches
and points of view related to the switched system character-
istics: non-periodic switching functions (Porfiri et al., 2008;
Almér and Jönsson, 2009), pulse modulations (Teel et al., 2004;
Pedicini et al., 2011), dithering (Iannelli et al., 2008), effects of
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exogenous inputs (Iannelli et al., 2008), hybrid systems frame-
work (Wang and Nešić, 2010; Wang et al., 2012). On the practi-
cal point of view, the averaging approach is a widely used tech-
nique in the power electronics community since 1970s (Sanders
et al., 1991; Pedicini et al., 2012b) and has been also applied to
other switched systems of practical interest, see (Pedicini et al.,
2012a) and the references therein. This paper has three ma-
jor contributions: 1) We establish an averaging result for linear
switched DAEs, 2) we present a partial averaging result in case
a smooth averaged model does not exist and 3) we show how
the averaging result can be utilized to achieve stabilization via
fast switching.

Averaging results for switched DAEs are presented in the
conference papers (Iannelli et al., 2013a,b), but under strong
limitations on the number of modes and on some properties of
their matrices. An alternative averaged model is conjectured
in Mostacciuolo and Vasca (2016), but without providing a for-
mal proof of convergence. The averaging result presented in
this paper is able to considerably relax the strong assumptions
of the previous works. The regularity of the DAEs allow us to
establish an equivalence of a DAE with a proper ordinary dif-
ferential equation (ODE) and then to prove an averaging result
which is also new for switched ODEs with jumps.

The partial averaging result is an extension of the averaging
result when some parts are still switching. It is built upon our
conference paper (Mostacciuolo et al., 2015b) which considers
only two modes; here we present the result for arbitrarily many
modes.

The stability property is a key topic for switched sys-
tems (Sun and Ge, 2011).The stabilization procedure for
switched DAE that we propose, is via fast switching. Our use
of averaging technique with this aim is new, but there is a strong
connection to the results in Mironchenko et al. (2015); in par-
ticular, Mironchenko et al. (2015, Rem. 21) already discusses
this connection and concludes that the averaging technique may

Preprint submitted to Elsevier April 7, 2017



be more powerful because commutativity of the flows is not
needed, see also the recent detailed comparison of this two ap-
proaches in Trenn (2016).

The paper is organized as following: in Section 2 we recall
some mathematical notions, present some concepts regarding
switched ODEs with jumps and some results from the theory
of switched DAEs. In Section 3 we present the averaging re-
sult for switched DAEs; the stability analysis is carried out in
Section 4 resulting in a method for stabilization via fast switch-
ing. In Section 5 the partial averaging result is presented. The
conclusions of the work are summarized in Section 6.

2. Notation and preliminaries

In the following subsections some preliminary definitions
are recalled. Furthermore, in order to present the averaging
technique, some results regarding switched ODEs and some
concepts of the theory of switched DAEs are illustrated. In the
sequel the following notation is adopted: Rn is the set of n-th
dimensional real vectors, R+ is the set of nonnegative real num-
bers, N is the set of nonnegatives integers, the product of any q
matrices {Mi}

q
i=1 is defined as (note the order)

q∏
i=1

Mi = MqMq−1, . . . ,M2M1,

‖ · ‖ is the Euclidean norm and ‖ · ‖∞ is the infinity norm. Recall
that a function f : R → Rn is called Lipschitz, if there exists a
positive constant L > 0 such that ∀p1, p2 ∈ R the inequality

‖ f (p1) − f (p2)‖ ≤ L |p1 − p2|

holds.

2.1. Big-O notation

Definition 1 (Big-O notation). Given any functions f : R+ →

Rn and g : R+ → R+, we say that f is an O(g(p)) function
as p → 0 ( f (p) = O(g(p)) for short), if there exist positive
constants α and p̄ such that

‖ f (p)‖ ≤ αg(p), ∀p ∈ (0, p̄).

In the case that f is a matrix-valued Definition 1 above can be
directly extended by using an induced matrix norm.

In the following, we are mainly concerned with the case
g(p) = p and f (p) = O(p). Clearly any linear combination of
functions which are O(p) is an O(p) function itself. Moreover if
f is Lipschitz and f (0) = 0 then it is also O(p) but the converse
does not necessarily hold because Definition 1 does not require
f (p) to be continuous. If f (p) = O(p) then f (p)→ 0 as p→ 0.
Given a compact set I ⊂ (0,∞) and functions xp : R+ → Rn

parameterized by p > 0, we implicitly indicate by

xp(t) = O(p), ∀t ∈ I

that these values are O(p) uniformly in t, i.e. the big-O-constant
α is independent of t.

By considering the Taylor approximation we can write, for
any matrix M ∈ Rn×n and any s ∈ [0, p]

eMs = I + Ms + O(p2) = I + O(p), (1)

where I is the identity matrix.

2.2. Projectors
Recall that a matrix Π ∈ Rn×n (or its associated linear map)

is a projector by definition if, and only if, it is idempotent, i.e.
Π2 = Π. There is a one-to-one correspondence between projec-
tors in Rn and direct sums Rn = V ⊕W, via

imΠ = V, kerΠ =W;

the projector is then said to map ontoV alongW.

Lemma 2. Let Π ∈ Rn×n be a projector and M ∈ Rn×n then

im M ⊆ imΠ ⇔ ΠM = M,

ker M ⊇ kerΠ ⇔ MΠ = M.

Proof. Necessity in both cases is trivial. Since Π is the identity
on imΠ sufficiency for the first case is also clear. Considering
the transpose and orthogonal complements, sufficiency of the
second case follows with analogous arguments. 2

For a family of projectors {Πi}
q
i=1 we will introduce now the

following Projector Assumption (PA) which will play a crucial
role for our averaging results

imΠ∩ ⊆ imΠi, (PA.1)
kerΠ∩ ⊇ kerΠi, (PA.2)

∀i ∈ Σ := {1, . . . , q} with Π∩ given by

Π∩ :=
q∏

i=1

Πi. (2)

Corollary 3. If a family of projectors {Πi}
q
i=1 with Π∩ given

by (2), satisfies the Projector Assumption (PA) then Π2
∩ = Π∩,

i.e. Π∩ itself is a projector.

Remark 4. Consider a family of projectors {Πi}
q
i=1 which com-

mute, i.e.
ΠiΠ j = Π jΠi, ∀i, j ∈ Σ, (3)

then Π∩ given as in (2) satisfies ΠiΠ∩ = Π∩ = Π∩Πi for all i ∈
Σ, hence Lemma 2 implies (PA.1) and (PA.2), but it is not true
in general that (PA) implies commutativity of the projectors, see
e.g. the forthcoming Example 16.

Lemma 5. (Iannelli et al., 2013a, Lem. 2 & Lem. 3) Let `(p) :
R+ → N be such that p`(p) = O(1) and let Π ∈ Rn×n be a
projector. Then

(Π + O(p))`(p) = O(1). (4)

Furthermore, for any matrices M, M̃ ∈ Rn×n with

ΠMΠ = M = Π M̃Π
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it holds that

Π
((
Π + M̃p + O(p2)

)`(p)
−

(
Π + Mp + O(p2)

)`(p)
)
Π

= `(p)O(p2). (5)

In the following an interpretation for `(p) in Lemma 5 will
be the number of consecutive periods of length p inside a fixed
time interval [0,∆]. Indeed for this case `(p) tends to infinity
when p goes to zero but ∆ − p < p`(p) ≤ ∆ = O(1).

Remark 6. The big-O-bounds in (4) and (5) can be given a
bit more explicit: by using an iterative approach with tedious
but standard algebraic manipulation, it can be shown that for
any projector Π ∈ Rn×n, any M ∈ Rn×n and any O(p2) matrix
F : R+ → Rn×n we have

‖(Π + Mp + F(p))`(p)‖ ≤ α1eα2α3,M∆

where α1, α2 ∈ R+ are such that ‖ · ‖ ≤ α1||| · ||| and ||| · ||| ≤ α2‖ · ‖

with a norm ||| · ||| on Rn defined such that for the induced ma-
trix norm it holds that |||Π ||| = 1 (it is easily seen that such a
norm always exists); and α3,M = 2 max{‖M‖, αF} where αF :=
supp∈(0,1) ‖F(p)‖/p2. Moreover for any M̃ ∈ Rn×n and any
O(p2) matrix F̃ : R+ → Rn×n it holds

Π
((
Π + M̃p + F̃(p)

)`(p)
−

(
Π + Mp + F(p)

)`(p)
)
Π

≤

∥∥∥∥(Π M̃2Π − ΠM2Π
)∥∥∥∥ ∆p + η1eη2∆ p2

where η1 = 32α1α4‖Π‖
2 with α4 = max(αF , αF̃ , ‖M‖2, ‖M̃‖2),

η2 = 4α2 max(α3,M , α3,M̃) and where αF̃ and α3,M̃ are given
analogously as above.

2.3. Class of switching signals

Let σ : R+ → Σ be a piecewise constant right-continuous
function, that selects at each time instant the index of the active
mode from the finite index set Σ := {1, 2, . . . , q}. In the sequel σ
is called the switching signal. Here we assume thatσ is periodic
with switching period p > 0. Without restriction we assume
that σ is monotone on each interval [kp, (k + 1)p), k ∈ N, i.e.,
we consider the switching signal

σ(t) =


1, t ∈ [tk, sk,2),
2, t ∈ [sk,2, sk,3),
...

q, t ∈ [sk,q, tk+1),

(6)

where the switching time instants tk, sk,i, k ∈ N, i ∈ Σ are de-
fined as follows

tk := kp, sk,i := tk +

i−1∑
j=1

d j p, (7)

where di ∈ (0, 1) is the duty cycle of the i-th mode; in particular,∑q
i=1 di = 1. Note that sk,1 = tk. Furthermore, let ci > 0 be the

d1 p

c1

d2 p

c2

dqp

cq

tk = sk,1 sk,2 sk,3 sk,q tk+1tk−1

Figure 1: Illustration of the switching times notation.

time interval between the beginning of any period and the end
of the i-th mode, i.e.

ci :=
i∑

j=1

d j p, i ∈ Σ. (8)

Note that cp = p and, by convention, c0 := 0. The notation is
illustrated in Figure 1.

2.4. Averaging for linear switched ODEs
Consider the switched ODE

ẇ(t) = Aσ(t)w(t) + Bσ(t)u(t), ∀t ∈ R+, w(0) = w0,

with Ai ∈ Rn×n and Bi ∈ Rn×m, i ∈ Σ, switching signal given
by (6) and continuous input u : R+ → Rm.

The corresponding averaged model is given by

ẇav(t) =

q∑
i=1

di(Aiwav(t) + Biu(t)), wav(0) = w0, (9)

see Pedicini et al. (2012b).
The approximation property between the averaged and the

switched systems is O(p) assuming the same initial condition
w0 and that the exogenous input u is bounded, differentiable
and with bounded derivative (Pedicini et al., 2011). No further
assumptions on the matrices Ai and Bi are needed for this ap-
proximation result.

2.5. Switched ODEs with jumps
In this subsection we prove some results for the case that

additional jumps are present in the switched ODE. The follow-
ing averaging result are new and noteworthy by themselves, but
mainly they will play important role for deriving our main re-
sults on averaging of switched DAEs.

Here we consider switched linear ODE with jumps of the
form

ẇ(t) = Aσ(t)w(t) + Bσ(t)u(t), t , sk,i,

w(s+
k,i) = Πσ(sk,i)w(s−k,i) + Qσ(sk,i)v(sk,i),

k ∈ N, i ∈ Σ, (10)

with initial condition w(0−) = w0 ∈ Rn; σ is given by (6), u :
R+ → Rmu , mu ∈ N, is the flow input, v : R+ → Rmv , mv ∈ N,
is the jump input, Ai ∈ Rn×n, Bi, Qi ∈ Rn×m and Πi ∈ Rn×n

are projectors determining the jumps. The first equation in (10)
describes the dynamics in the different modes, while the second
equation represents the jump rule at the switching time instants.

The following Lemma expresses the solution of (10) evalu-
ated at the multiplies of the switching period in a compact form
depending on the initial conditions and on the input.
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Lemma 7. Consider the switched ODE (10) with periodic
switching signal (6) with period p > 0. Then there exist ma-
trices H(p) ∈ Rn×n, N(p) ∈ Rn×qmv and an operator I(p) such
that every solution of (10) satisfies

w(t−k ) = H(p)w(t−k−1) + N(p)vk−1 + I(p){uk−1} ∀k ∈ N, (11)

where vk−1 := [vsk−1,1 vsk−1,2 . . . vsk−1,q ]
> and uk−1 indicates the in-

put function on the time interval (tk−1, tk) translated into the
time interval (0, p), i.e., uk−1 : (0, p)→ Rm, ξ 7→ u(ξ + tk−1). In
particular,

w(t−k ) = H(p)kw0 +

k−1∑
i=0

H(p)k−1−i(N(p)vi + I(p){ui}). (12)

The explicit formulas for H(p), N(p) and I(p) and the proof
are given in the Appendix.

We highlight in the following that for a zero initial value,
“small” inputs and some additional assumptions on the jump
maps, the solutions of (10) remain small in the O(p) sense.

Lemma 8. Consider the switched ODE (10) with initial condi-
tion w(0−) = 0 and periodic switching signal (6) with period
p > 0. Consider any given interval [0,∆] where ∆ ∈ R+, and
assume that the following conditions hold

(i) u(t) = O(p), ∀t ∈ [0,∆],
(ii) vsk,i = O(p), ∀k ∈ N, i ∈ Σ,

(iii) Π∩ given by (2) is a projector,
(iv) ΠiQi−1 = 0, i ∈ Σ with Q0 := Qq.

Then w(t) = O(p), ∀t ∈ [0,∆].

The proof is carried out in the Appendix.

Remark 9. Lemma 8 is similar to classical input to state sta-
bility results, in the sense that a small input (of order O(p))
results in a small state (also O(p)) on any fixed time interval.
A stability result utilizing averaging for general hybrid systems
has been investigated in Wang et al. (2012).

2.6. Switched DAEs
A non homogeneous switched linear DAE is given by

Eσ(t) ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t), t ∈ R+, (13)

where x : R+ → Rn is the state, u : R+ → Rm is the input,
x(0−) = x0 is the initial condition and the periodic switching
signal σ is given by (6).

The dynamic of each mode i of the system is given by the
following linear DAE

Ei ẋ(t) = Aix(t) + Biu(t) (14)

where Ei, Ai ∈ Rn×n, Bi ∈ Rn×m are constant matrices for each
i ∈ Σ. All solutions of each mode evolve within a consistency
space that is a linear subspace of Rn. The value x(s−k,i) just be-
fore a switching instant sk,i is not necessarily in the consistency
space of the mode after the switch. Therefore it is necessary to

allow solutions with jumps; this leads to problems in evaluating
the derivative in (13). To resolve this problem we use the dis-
tributional solution framework as introduced in Trenn (2012).
Furthermore, the solutions of switched DAE can also contain
Dirac impulses (in addition to possible jumps), i.e., each mode
can have impulsive modes of arbitrary degree but in this paper
we only consider the impulse-free part of the solution (which
may still contain jumps). Recently, some preliminary results
concerning the convergence of the Dirac impulses were ob-
tained in Trenn (2015).

If the matrix pairs (Ei, Ai) are regular, i.e. m = n and the
polynomial det(sEi − Ai) is not the zero polynomial, then the
following result is well known:

Proposition 10 (Quasi Weierstrass form). A matrix pair
(E, A) ∈ Rn×n × Rn×n is regular if and only if there exist
invertible transformation matrices S ,T ∈ Rn×n which put
(E, A) into quasi Weierstrass form

(S ET, S AT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
(15)

where N ∈ Rn2×n2 , with 0 ≤ n2 ≤ n is a nilpotent matrix, J ∈
Rn1×n1 with n1 = n − n2 is some matrix and I is the identity
matrix of the appropriate size.

Note that, the transformation matrices S and T can easily be
obtained via the so called Wong sequences, see Berger et al.
(2012).

Definition 11 (Flow matrix and projectors). Consider a reg-
ular matrix pair (E, A) and its quasi Weierstrass form (15). The
consistency projector Π and the flow matrix Adiff of (E, A) are
given by

Π = T
[
I 0
0 0

]
T−1, Adiff = T

[
J 0
0 0

]
T−1;

the differential and the impulsive projectors of (E, A) are given
by

Πdiff = T
[
I 0
0 0

]
S , Π imp = T

[
0 0
0 I

]
S .

Note that the flow matrix and the projectors do not depend on
the specific choice of T and S , furthermore it is easily seen that
AdiffΠ = Adiff = ΠAdiff and Π is indeed idempotent and hence
a projector, but the differential and impulse projectors are not
idempotent in general.

The role of projectors and the flow matrix becomes clear
with the following important result.

Theorem 12. Consider the switched DAE (13) with regular
matrix pairs (Ei, Ai) and corresponding flow matrices Adiff

i and
projectors Πi, Π

imp
i , Πdiff

i for i ∈ Σ. Assume that

Π
imp
i Bi = 0, ∀i ∈ Σ. (16)

Then x : R+ → Rn is the impulse free part of any (distri-
butional) solution of (13) if and only if x is a solution of the
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switched ODE with jumps given by

ẋ(t) = Adiff
i x(t) + Bdiff

i u(t), ∀t ∈ (sk,i, sk,i+1)
x(s+

k,i) = Πix(s−k,i),

x(0−) = x0,

(17)

where Bdiff
i := Πdiff

i Bi, i ∈ Σ, k ∈ N.

Proof. The (impulse-free) solution of (13) is obtained by “con-
catenating” the solution of each mode (14), that can be written
as follows

x(t) = eAdiff
i (t−sk,i)x(s+

k,i) +

∫ t

sk,i

eAdiff
i (t−s)Πdiff

i Biu(s)ds

−

n−1∑
i=0

(Eimp
i )iΠ

imp
i Biu(t)(i) (18)

with Eimp
i := Π

imp
i Ei and t ∈ (sk,i, sk,i+1). Then the proof directly

follows by considering (18) combined with (16). 2

Remark 13. Theorem 12 generalizes the result in Trenn and
Wirth (2012) to the inhomogeneous case with arbitrarily high
index.

Remark 14. As a consequence of Theorem 12 and Lemma 7
we can write the solution of the switched DAE (13) at tk in a
form similar to (12) with vi = 0 ∀i ∈ N; in particular

x(t−k ) = Hdiff(p)kw0 +

k−1∑
i=0

Hdiff(p)k−1−iIdiff(p){ui}, (19)

where

Hdiff(p) =

q∏
i=1

eAdiff
i di pΠi, (20a)

Idiff(p){uk−1} =

q∑
i=1

q∏
j=i+1

eAdiff
j d j pΠ j

∫ ci

ci−1

eAdiff
i (ci−ξ)Bdiff

i uk−1(ξ)dξ,

(20b)

with ci given by (8).

3. Averaging for switched DAEs

Averaging theory is based on the observation that a rapidly
time-varying system can be viewed as a small perturbation of a
simplified, time-invariant, averaged system.

Given a switched DAE (13) with periodic switching signal
σ given by (6) with period p > 0, we want to investigate the
possible existence of an averaged model that approximates the
behavior of the system. For that we need to show that in the
limit p → 0 the solution of the averaged model converges to
that of the switched system.

We propose the following averaged model of (13)

ẋav(t) = Aavxav(t) + Bavu(t), t ∈ R+

xav(0) = Π∩x0
(21)

where

Aav := Π∩Adiff
av Π∩, Bav := Π∩Bdiff

av

Adiff
av :=

q∑
i=1

diAdiff
i , Bdiff

av :=
q∑

i=1

diBdiff
i

 (22)

and di, i ∈ Σ, is the duty cycle of the i-th mode as in (7) and Π∩
is given by (2).

Remark 15. If Π∩ is a projector then im Π∩ is Aav-invariant,
in particular, all solutions of (21) evolve within im Π∩. Fur-
thermore, if (PA) holds ∀i ∈ Σ, then due to Lemma 2 we have

xav(t) = Πixav(t), ∀t ∈ R+, ∀i ∈ Σ.

In the following subsections we present conditions for
which the system (21)–(22) indeed represent an averaged model
of (13) for the homogeneous and non homogeneous cases, re-
spectively.

3.1. Homogeneous switched DAEs

In the following example we consider a switched DAE (13)
with u = 0. This setup has already been investigated (Ian-
nelli et al., 2013b,a), however the following example shows that
the commutative condition on the consistency projectors for-
mulated therein is not necessary for convergence towards the
averaged model.

Example 16. Consider the switched DAE (13) in the homoge-
neous case, i.e. u = 0, with three modes, i.e. q = 3, given
by

E1 =

[
0 1 0
1 0 1
0 0 0

]
, E2 =

[
1 0 0
0 1 0
0 0 0

]
, E3 =

[
0 1 0
1 0 1
0 0 0

]
,

A1 =

[
8 −1 8
−1 2 −1
1 0 0

]
, A2 =

[
−10 −1 −10
−1 0 −1
0 0 1

]
, A3 =

[
−1 4 0
−4 −1 0
0 0 1

]
.

The corresponding consistency projectors are

Π1 =

[
0 0 0
0 1 0
1 0 1

]
, Π2 =

[
1 0 0
0 1 0
0 0 0

]
, Π3 =

[
1 0 1
0 1 0
0 0 0

]
.

The consistency projectors do not pairwise commute, hence the
results in Iannelli et al. (2013b,a) are not applicable. However,
simulations indicate that nevertheless convergence occurs for
fast switching; Figure 2 illustrates the convergence for duty cy-
cles (d1, d2, d3) = (0.2, 0.5, 0.3). The corresponding averaged
model (21) is given by

ẋav(t) =

[
0 0 0
0 1 0
0 0 0

]
xav(t), xav(0) = Π∩ x0 =

[
0 0 0
0 1 0
0 0 0

]
x0.

The above example indicates that the assumptions made
in Iannelli et al. (2013b,a) are too restrictive. The following
main averaging result for homogeneous switched DAEs indeed
shows that the assumptions on the consistency projectors can
be significantly relaxed:
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Figure 2: Evolution of state variables (first component top, second com-
ponent middle, third component bottom) of Example 16 with initial value
x0 = (0.1,−2, 1.5)> for slow switching (p = 0.1s, left) and fast switching
(p = 0.02s, right). The averaging dynamics are plotted with dotted black lines,
while the trajectories of the switched DAE are colored according to the active
mode (mode 1 blue, mode 2 magenta, mode 3 green). Note that x3 is not O(p)
on [0, p).

Theorem 17. Consider the regular switched DAE (13) with pe-
riodic switching signal σ given by (6) with period p > 0, initial
condition x(0−) = x0 and u = 0. Denote by xσ,p(t) the (in
general discontinuous) impulse-free part of the (in general dis-
tributional) solution of (13) with u = 0 and let xav(t) be the
(smooth) solution of (21) with u = 0. Assume that (PA) holds
∀i ∈ Σ, then for any ∆ > p

xσ,p(t) − xav(t) = O(p), (23)

uniformly for all t ∈ [p,∆].

The proof is carried out in the Appendix.

Example 18 (Example 16 revisited). The averaged model
conjectured in Example 16 can be now confirmed. It is easily
seen that

im Π∩ =

(
0
∗
0

)
⊆ im Πi and ker Π∩ =

( ∗
0
∗

)
⊇ ker Πi

for i = 1, 2, 3, i.e. (PA) holds and Theorem 17 can be applied,
hence the observed averaging behavior from the simulations is
indeed proven.

Remark 19. An expression for the bound corresponding to the
big O-term in (23) can be obtained by following the three steps
adopted in the proof of Theorem 17 reported in the Appendix,
by using the second order Taylor remainders for the exponential
matrices, see e.g. Amann and Escher (2008, Theorem 5.8), and
by exploiting the bounds in Remark 6. With tedious but stan-
dard algebraic manipulation it can be shown that there exist
constants ζ1 > 0, ζ2 > 0 and p̄ < 1 such that

‖xσ,p(t) − xav(t)‖ ≤ ζ1eζ2∆ ‖x0‖ p, ∀t ∈ [p,∆], ∀p ≤ p̄.

Note that for a fixed period p the bound in Remark 19 grows
to infinity with ∆ → ∞. In general, a bounded error on the

whole time-axis cannot be expected, as even for the classical
averaging result on switched ODEs such a bound does not exist,
see the forthcoming Example 28.

A bound of the error for ∆ → ∞ can be found under some
additional assumptions. An interesting case is when the aver-
aged system (21) is exponentially stable. In that case our forth-
coming stability result (Theorem 27) shows that the switched
system is exponentially stable too, i.e. xσ,p converges to zero as
t → ∞. Hence both xσ,p and xav converge to zero as t → ∞ then
the global boundedness of xσ,p − xav can trivially be concluded
for sufficiently small p.

The exponential stability of the averaged system is not a
necessary condition for the error boundedness with ∆ → ∞.
For instance, assume that the consistency projectors commute
with the flow-matrices and with each-other, i.e.

ΠiAdiff
j = Adiff

j Πi, ∀i, j ∈ Σ, (24)

together with (3). Then with simple algebraic manipulations
on (19)–(20) one can show that

xσ,p(tk) = xav(tk), ∀k ∈ N.

Therefore, if xav remains bounded, then we can conclude
that (23) uniformly for all t ∈ [p,∞).

Remark 20. Theorem 17 makes a statement about the homo-
geneous switched DAE (13); however, it is also applicable to
switched ODEs with jumps of the form (17) with u = 0. For
this it is not necessary that Adiff

i and Πdiff
i , i ∈ Σ, are defined

in terms of regular matrix pairs (Ei, Ai); it suffices that the fol-
lowing properties hold: Π2

i = Πi, ΠiAdiff
i = Adiff

i = Adiff
i Πi,

i ∈ Σ, i.e. Πi must be projectors which are compatible with the
corresponding flow matrices Adiff

i . Then (PA) also ensures con-
vergence towards an averaged system for switched ODE with
jumps.

Remark 21. The Projector Assumption (PA) means that, in
contrast to the classical averaging result on switched ODEs, the
averaging result for switched DAEs depends on the sequence of
modes because of the presence of Π∩ in (22). For instance, by
considering in Example 16 the sequence of modes 1, 3, 2 instead
of 1, 2, 3, the condition (PA.1) is no more satisfied and conver-
gence towards the averaged system does not occur anymore.

3.2. Non homogeneous switched DAEs
The following simple example shows that a straightforward

generalization of the averaging result to the non homogeneous
case is not possible.

Example 22. Consider the scalar switched DAE (13) with

(E1, A1, B1) = (0, 1, 1) and (E2, A2, B2) = (0, 1, 0),

then x(t) = u(t) in mode 1 and x(t) = 0 in mode 2. If the
input is not zero, this means that fast switching will not result
in convergence because x will jump back and forth between a
non-zero value and zero. Note that Π1 = Π2 = 0, hence for
u = 0 the assumptions of Theorem 17 are trivially satisfied.

6



+
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+

−
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−
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Figure 3: Electrical circuit with two capacitors, one inductor and two switches.

However, if the solutions of the switched DAE can be expressed
by solutions of a switched ODE with jumps, i.e., the assump-
tions of Theorem 12 are satisfied, then an averaging result can
be shown also in the non homogeneous case, (Mostacciuolo
et al., 2015a) for the case of commuting consistency projectors.

Theorem 23. Consider the regular switched DAE (13) with pe-
riodic switching signal σ given by (6) with period p > 0 and
initial condition x(0−) = x0. Denote by xσ,p the (in general dis-
continuous) impulse-free part of the (in general distributional)
solution of (13) and let xav be the (smooth) solution of (21).
If (PA) and (16) hold ∀i ∈ Σ and the input u : R+ → Rm is
Lipschitz continuous, then for any ∆ > p

xσ,p(t) − xav(t) = O(p) (25)

uniformly for all t ∈ [p,∆].

The proof is carried out in the Appendix.
We will now apply the theoretical result to a model of an

electrical circuit with switches as given in Figure 3.

Example 24. The electrical circuit in Figure 3 can be mod-
eled by a non homogeneous switched DAE (13) with x =

[vC1 , vC2 , iL]> and

E1 =

[
C1 0 0
0 C2 0
0 0 L

]
, A1 =

[
0 0 1
0 − 1

R2
0

−1 0 −R1

]
, B1 =

[
0
0
1

]
,

E2 =

[
C1 C2 0
0 0 L
0 0 0

]
, A2 =

[
0 − 1

R2
1

−1 0 −R1
1 −1 0

]
, B2 =

[
0
1
0

]
,

E3 =

[
C1 C2 0
0 0 0
0 0 0

]
, A3 =

[
0 − 1

R2
0

1 −1 0
0 0 1

]
, B3 =

[
0
0
0

]
,

E4 =

[
C1 0 0
0 C2 0
0 0 0

]
, A4 =

[
0 0 0
0 − 1

R2
0

0 0 1

]
, B4 =

[
0
0
0

]
.

The correspondence between the modes 1, 2, 3, 4 and the
switches S 1, S 2 is indicated in Table 1.

Table 1: Modes of the electrical circuit.

mode 1 2 3 4
S 1 closed closed open open
S 2 open closed closed open

The corresponding consistency and impulse projectors are
given by

Π1 = I, Π2 =

[
ρ1 ρ2 0
ρ1 ρ2 0
0 0 1

]
, Π3 =

[
ρ1 ρ2 0
ρ1 ρ2 0
0 0 0

]
, Π4 =

[
1 0 0
0 1 0
0 0 0

]
,

0 d1 p p 2p 3p
0.8

0.9

1

x1

0 d1 p p 2p 3p
0.7

0.8

0.9

1

x2

0 d1 p p 2p 3p
0

0.02

0.04

x3

t

0 5p 10p 15p
0.8

0.9

1

x1

0 5p 10p 15p
0.7

0.8

0.9

1

x2

0 5p 10p 15p
0

0.02

0.04

x3

t

Figure 4: Evolution of the state variables (first component top, second com-
ponent middle, third component bottom) for slow switching (p = 0.1s, left)
and fast switching (p = 0.02s, right). The averaging dynamics are plotted with
dotted black lines, while the trajectories of the switched DAE are colored ac-
cording to the active mode (mode 1 blue, mode 2 magenta, mode 3 green, mode
4 red).

Π
imp
1 = 0, Π imp

2 =

[ 0 0 ρ2
0 0 −ρ1
0 0 0

]
, Π

imp
3 =

[ 0 ρ2 0
0 −ρ1 0
0 0 1

]
, Π

imp
4 =

[
0 0 0
0 0 0
0 0 1

]
,

where ρ1 := C1
C1+C2

and ρ2 := C2
C1+C2

. It is easily seen that the
consistency projectors commute, hence (PA) is satisfied, and
furthermore Π

imp
i Bi = 0, so Theorem 23 is applicable. The cor-

responding averaged system (21) for the duty cycles (d1, d2, d3, d4) =

(0.3, 0.4, 0.2, 0.1) is given by

Aav =

 −
ρ2

1
R2C1

−
ρ2

2
R2C1

0

−
ρ2

1
R2C1

−
ρ2

2
R2C1

0
0 0 0

 , Bav = 0, Π∩ =

[
ρ1 ρ2 0
ρ1 ρ2 0
0 0 0

]
.

Note that the resulting averaged system is homogeneous no mat-
ter what the (positive) duty cycles and the physical parameters
are. Figure 4 illustrates the convergence for the following pa-
rameters: C1 = 80.36 mF, C2 = 8.2 mF, L = 5 H, R2 = 20 Ω,
R1 = 10 Ω and u = 5 V, the initial value is x0 = (1, 1, 0)>.

The Lipschitz assumption on the input u in Theorem 23 can be
relaxed in a particular case as shown by the following result.

Proposition 25. Consider a non homogeneous switched
DAE (13) where (PA) and (16) hold. If additionally

Bdiff
i = Bdiff

j , ∀i, j ∈ Σ (26)

then the averaging result (25) is satisfied.

The proof is carried out in the Appendix.

Remark 26. In the case of a switched DAE with two modes,
the averaging results proved in Theorem 17, Theorem 23 and
Proposition 25 hold even if Π∩ is a projector but assump-
tion (PA.2) doesn’t hold.
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4. Stability via fast switching

The averaging result in Theorem 17 can be used for the sta-
bility analysis of the homogeneous switched DAE

Eσ(t) ẋ(t) = Aσ(t)x(t), t ∈ R+, (27)

with σ given by (6). As already pointed out in Remark 19,
the convergence towards the averaged system is only true on
any compact interval, hence it is not immediately clear what
the convergence behavior for t → ∞ is. This problem can be
resolved in case the averaged system is exponentially stable:

Theorem 27. Consider the regular switched DAE (27) with pe-
riodic switching signal σ given by (6) and initial condition
x(0−) = x0. If the corresponding homogeneous averaged sys-
tem (21) is exponentially stable for some duty cycle, then there
exists a sufficiently small switching period p∗ > 0, such that the
switched system (27) is exponentially stable.

Proof. Due to the exponential stability of the averaged system
we can choose a fixed time instant T > 0, such that

‖xav(T )‖ ≤
1
2
‖xav(T/2)‖, (28)

for all initial conditions x0 ∈ Rn in (21). Let

c := min
{ ∥∥∥eAavT/2Π∩x0

∥∥∥ ∣∣∣ ‖Π∩x0‖ = 1
}
> 0,

where positivity follows from the continuity of the map z 7→
eAavT/2z and triviality of the kernel of the matrix eAavT/2. Because
of (23) we can choose p > 0 sufficiently small such that

‖xav(T ) − xσ,p(T−)‖ ≤
c
8
≤

1
8
‖xav(T/2)‖ (29)

‖xσ,p(T/2−) − xav(T/2)‖ ≤
c
8
≤

1
8
‖xav(T/2)‖, (30)

for all p ∈ (0, p) and all solutions of (27) and (21) where we
consider, without loss of generality, initial conditions x0 satis-
fying ‖Π∩x0‖ = 1.

Combining (29) with (28), and by using the reverse triangle
inequality, we obtain

‖xσ,p(T−)‖ ≤ ‖xav(T )‖ +
1
8
‖xav(T/2)‖

≤
1
2
‖xav(T/2)‖ +

1
8
‖xav(T/2)‖, (31)

and (30) together with the reverse triangle inequality, implies

‖xσ,p(T/2−)‖ ≥ ‖xav(T/2)‖ −
1
8
‖xav(T/2)‖. (32)

Altogether, we arrive at

‖xσ,p(T−)‖ ≤
5
7
‖xσ,p(T/2−)‖, (33)

i.e. we have shown that for all initial conditions there is a reduc-
tion of at least 5/7 of the norm of the state on a time interval

of length T/2 and for all sufficiently small switching periods
p. Without restriction, we can choose a p∗ = T/(2θ) for suffi-
ciently large θ ∈ N. Consider the solution of (27) as a concate-
nation of transition matrices defined as

Φp∗,i := eAdiff
i di p∗Πi,

then let us introduce for t1 > t0 ≥ 0 the state transition matrix
Φ

t−0→t−1
σ,p ∈ Rn×n which maps any (possibly inconsistent) initial

value x0 ∈ Rn at t−0 to the value of x(t−1 ), in particular,

xσ,p∗ (t+1 ) = Φ
t0→t1
σ,p∗ xσ,p∗ (t−0 ),

for all solutions of (27) and all t1 > t0 ≥ 0. From (33) it follows
that ∥∥∥∥ΦT/2→T

σ,p∗

∥∥∥∥ ≤ 5/7.

From T/2 = θp∗ for θ ∈ N and the periodicity of the switching
signal it follows that

Φ
kT/2→(k+1)T/2
σ,p∗ = Φ

T/2→T
σ,p∗ ∀k ∈ N \ {0},

in particular, by considering that T/2 is a multiple of the switch-
ing period p∗,

xσ,p∗ (kT/2−) = (ΦT/2→T
σ,p∗ )k−1Φ

0→T/2
σ,p∗ x0,

and hence

‖xσ,p∗ (kT/2−)‖ ≤
(

5
7

)k−1 ∥∥∥∥Φ0→T/2
σ,p∗

∥∥∥∥ ‖x0‖. (34)

From (30), by applying the reverse triangle inequality we have
that

‖Φ0→T/2
σ,p ‖‖x0‖ ≤ ‖xav(T/2)‖ + αp

with a suitable constant α > 0. Hence, considering (1) we can
conclude that

Φ0→T/2
σ,p = eAavT/2 + O(p) = O(1). (35)

Furthermore, for τ ∈ (0,T/2) we have that

xσ,p∗ (kT/2 + τ−) = Φ
T/2→T/2+τ
σ,p∗ xσ,p∗ (kT/2−), (36)

where
ΦT/2→T/2+τ
σ,p = eAavτ + O(p) = O(1). (37)

Considering the time instant t = kT/2 + τ and combining (34)
with (36), we have that

‖xσ,p∗ (t−)‖ ≤
(

5
7

)k−1 ∥∥∥∥ΦT/2→T/2+τ
σ,p∗

∥∥∥∥ ∥∥∥∥Φ0→T/2
σ,p∗

∥∥∥∥ ‖x0‖.

By considering (35), (37), k = 2(t − τ)/T and µ =
(

5
7

)2
where

µ ∈ (0, 1), we have that for sufficiently small p∗ = T/(2θ), there
exists constant C > 0 such that ∀ t > 0

‖xσ,p∗ (t−)‖ ≤ Cµbt/T c‖x0‖,

which implies exponential stability of the switched system (27).
2
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Note that exponential (or equivalently asymptotic) stability
of the averaged system (21) is a crucial assumption in Theo-
rem 27; mere stability of the averaged system is not sufficient
to conclude stability of the switched system as the following
switched ODE example shows.

Example 28. Consider a simple switched DAE given by

E1 = I, A1 =
[

1 0
1 0

]
,

E2 = I, A2 =
[
−1 0
−1 0

]
.

For a duty cycle d1 = d2 = 0.5 the dynamic averaged matrix is
a zero-matrix, i.e. Aav = 0, then the averaged model is stable
but not asymptotically. The solution of the switched system is
given by

x1(tk) = x10

x2(tk) = x20 + 2k(ep/2 − 1)x10.

Then
|x2(tk) − x2,av(tk)| = 2k(ep/2 − 1)x10.

For fixed p and growing k this difference between the second
state variable of the switched and the averaged models grows
unbounded, hence the switched system is not stable.

Example 28 shows that the stability of the averaged model is not
sufficient for having a bound of the error between the switched
and the averaged states when t → ∞ (see Remark 19 and the
consideration reported below it).

5. Partial averaging

The averaging result in Theorem 23 allows to approximate a
switched DAE by means of a smooth averaged system. If (PA)
is not satisfied, it might be possible to partition the state variable
such that the averaging result holds only for a part of the state.
The resulting partial averaged model is still a switched system
but simpler than the original one.

Therefore, we assume that the state space is partitioned in a
suitable way and that the corresponding consistency projectors
and flow matrices have the following structure:

Adiff
i =

[
Adiff

11,i 0
Adiff

21,i Adiff
22,i

]
, Bdiff

i =

[
Bdiff

1,i
Bdiff

2,i

]
, Πi =

[
Π11,i 0
Π21,i Π22,i

]
,

(38)
where A11,i,Π11,i ∈ Rα×α with 0 < α < n being independent of
mode i ∈ Σ. We furthermore assume that convergence towards
an averaged system occurs in the first part of the state space,
in view of Theorem 12 and Remark 20 it suffices to assume
that (16) holds and that (PA) holds for the projectors Π11,i. We
then propose the following partial averaged system:

ẋpav(t) = Adiff
pav,ixpav(t) + Bdiff

pav,iu(t), t ∈ (sk,i, sk,i+1) (39a)

xpav(s+
k,i) = Π∗i xpav(s−k,i), (39b)

xpav(0−) = Π∗∩x0, (39c)

with switching times sk,i as in (7) and where

Adiff
pavi

:=
[
Apav 0
Adiff

21,i Adiff
22,i

]
, Bdiff

pav,i :=
[
Bpav
Bdiff

2,i

]
,

Π∗i :=
[

Iα 0
Π21i Π22,i

]
, Π∗∩ :=

[
Π11,∩ 0
Π21,i Π22,i

]
,

(40)

with

Apav := Π11,∩

q∑
i=1

diAdiff
11,iΠ11,∩, Bpav := Π11,∩

q∑
i=1

diBdiff
1,i , (41)

and Π11,∩ :=
∏q

i=1 Π11i .
The special structure of the switched DAE (and the corre-

sponding switched ODE with jumps) implies that the first part
of the state can be viewed as an input to the second part of the
state. Hence one would expect that the second state compo-
nents behave similar for the switched DAE and for partial aver-
aged system, because they are both “driven” by similar inputs
(at least for small periods p). However, this intuition is not true
in general as the following example shows.

Example 29. Consider the following matrix pairs (Ei, Ai) with
i = 1, 2

E1 =

[ 1 0 0
0 − 3

4 3
3 − 1

4 1

]
, A1 =

[
0 5 0
0 7 0
−3 1 0

]
, E2 =

[
1 0 0
0 1 1
0 0 0

]
, A2 =

[
5 −2 0
6 −1 0
1 3 0

]
.

The corresponding flow-matrices and the consistency projec-
tors have a triangular structure (38) with α = 1. In particular,
the projectors Π11,1 and Π11,2 commute, hence (PA) is satisfied.

Figure 5 illustrates the solution behavior of the switched
DAE in comparison to the partial averaged system. As expected
due the assumptions made, the first state variable converges to
the smooth part of the partial averaged system. Also the second
state variable seems to converge to the discontinues solution of
the partial averaged system. However, the third variable does
not converge. As highlighted in Figure 5 the absolute distance
does not decrease for a decreasing switching period. Even
worse, the third state variable grows unbounded for p → 0.
This phenomena is due the fact that the set of consistency pro-
jectors is not product bounded, cf. Trenn and Wirth (2012).

The previous example indicates that some further assumptions
are necessary. The following main result on partial averaging
provides sufficient conditions for convergence.

Theorem 30. Consider the regular switched DAE (13) with pe-
riodic switching signal σ with period p > 0 given by (6) and
initial condition x(0−) = x0. Assume that the following condi-
tions hold.

(i) The matrix pairs (Ei, Ai) are regular and (16) holds ∀i ∈
Σ.

(ii) The corresponding consistency projectors Πi, flow matri-
ces Adiff

i and Bdiff
i are in the form of (38).

(iii) ∀i ∈ Σ

imΠ11,∩ ⊆ imΠ11,i, kerΠ11,∩ ⊇ kerΠ11,i. (42a)
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Figure 5: Evolution of the state variables (first component top, second com-
ponent middle, third component bottom) of Example 29 for slow switching
(p = 0.1s, left) and fast switching (p = 0.02s, right). The averaging dynamics
are plotted with dotted black lines, while the trajectories of the switched DAE
are colored according to the active mode (mode 1 blue, mode 2 magenta).

(iv) The matrix
∏q

i Π22,i is a projector.
(v) Π22,iΠ21,i−1 = 0, ∀i ∈ Σ with Π21,0 := Π21,q.

Denote by xσ,p(t) the (in general discontinuous) impulse-free
part of the (in general distributional) solution of (13) and let
xpav(t) be the solution of the switched partial averaged sys-
tem (39). Then for any ∆ > 0

xσ,p(t) − xpav(t) = O(p), (43)

uniformly for all t ∈ [p,∆].

Proof. By decomposing xpav(t) = [zpav(t) ypav(t)]> and xσ,p(t) =

[zα(t) y(t)]>, we can define the error variables wy = y− ypav and
wz = z−zpav and can consider the corresponding error dynamics
which are given by a switched ODE with jumps. Then the proof
is a straightforward combination of the Remark 20 extended to
the case of non homogeneous systems and Lemma 8. 2

We conclude by discussion a variation of Example 24.

Example 31. Consider again the electrical circuit of Figure 3
where, for simplicity, the inductor is replaced by a short cir-
cuit. In contrast to Example 24, we now consider as state
variables the currents and the voltages of the two capacitors,
i.e. x = [vC1 , vC2 , iC1 , iC2 ]>. However, with this choice of vari-
ables, Π

imp
i Bi , 0 for i = 1, 2, i.e. it is not possible to express

the solutions of the switched DAE by solutions of a switched
ODE with jumps. Nevertheless, it is possible to apply the (par-
tial) averaging result by assuming that the input is constant.
Because then we can reinterpret the input as a state variable
with governing equation u̇ = 0. This results in the new state
x = [vC1 , vC2 , u, iC1 , iC2 ]> and the following matrices:

Ei =

 C1 0 0 0 0
0 C2 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 , i = 1, . . . , 4,

A1 =

 0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
1 0 −1 R1 0
0 1 0 0 −R2

 , A2 =


0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
1 −1 0 0 0
1 R1

R2
−1 R1 R1

 ,
A3 =


0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
1 −1 0 0 0
0 1

R2
0 1 1

 , A4 =

 0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 1 0
0 1 0 0 −R2

 ,
and Bi = 0, i = 1, . . . , 4. Consider the constants ρ1 and ρ2
defined in Example 24 and let ρ3 := ρ1ρ2(R1+R2)

R1R2
, then the consis-

tency projectors are

Π1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
− 1

R1
0 1

R1
0 0

0 1
R2

0 0 0

 , Π2 =


ρ1 ρ2 0 0 0
ρ1 ρ2 0 0 0
0 0 1 0 0

−
ρ3C1

C2
−ρ3

ρ1
R1

0 0

−ρ3 −
ρ3C2

C1

ρ2
R1

0 0

 ,

Π3 =


ρ1 ρ2 0 0 0
ρ1 ρ2 0 0 0
0 0 1 0 0

−
ρ2

1
R2
−
ρ1ρ2

R2
0 0 0

−
ρ1ρ2

R2
−
ρ2

2
R2

0 0 0

 , Π4 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 1

R2
0 0 0

 .
We can see that (PA) is not satisfied and an averaging result as
stated in Theorem 17 does not hold. However, the consistency
projectors (as well as the Adiff-matrices) can be partitioned ac-
cording to (38) with α = 3 and it can be verified that all as-
sumptions of Theorem 30 are satisfied, i.e. convergence towards
the partial averaged system (39) is guaranteed. Simulations
for duty cycles (d1, d2, d3, d4) = (0.3, 0.4, 0.2, 0.1), initial value
x0 = (1, 1, 5, 0, 0)> and the same physical parameters as in
Example 24 (apart from L) are shown in Figure 6.

6. Conclusion

In this paper we have analyzed the averaging technique ap-
plied to switched linear DAEs; an averaged model has been
formulated, for which convergence of solutions is shown. In
Theorem 17 and Theorem 23 the averaging result is obtained
by making assumptions on the image and on the kernel of the
consistency projectors. If the averaged model is exponentially
stable this averaging result is utilized to conclude that exists a
periodic switching signal such that the switched DAE is s ex-
ponentially stable.

We also considered the case in which the state variables
present jumps that are independent from the switching period.
This state variables cannot be represented in a continuous way
but we can still use an averaged model for the remaining state
variables.

Our averaging results for non homogeneous switched DAEs
are based on the analysis of an equivalent switched ODE with
jumps (Theorem 12). This equivalence is only valid for some
structural assumptions on the B-matrices and for the full aver-
aging result this assumptions seem justified. However, for the
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Figure 6: Evolution of the state variables (first component top, fifth component
bottom) of Example 31 for slow switching (p = 0.1s, left) and fast switching
(p = 0.02s, right). The trajectories of the switched DAE are colored according
to the active mode (mode 1 blue, mode 2 magenta, mode 3 green, mode 4 red).

partial averaging result, Example 31 indicates that the equiv-
alence to a switched ODE with jumps is too restrictive. Find-
ing less restrictive assumptions which ensure a partial averaging
model is still an open question.

It seems that Theorem 17, Theorem 23 and Theorem 30,
may be extended to switching signals with non-constant duty
cycles di, i ∈ Σ. This would result in a time-dependent averaged
model, in analogy with the result of the averaging theory for
switched ODE, see Pedicini et al. (2012b); this is a topic of
future research.

Appendix

Proof of Lemma 7.
The solution of the switched ODE on the interval (sk−1,q, tk)

evaluated at t−k is given by

w(t−k ) = eAqdqpw(s+
k−1,q) +

∫ tk

sk−1,q

eAq(tk−ξ)Bqu(ξ)dξ. (44)

Furthermore

w(s+
k−1,q) = Πqw(s−k−1,q) + Qqvsk−1,q , (45)

where w(s−k−1,q) is the solution on the interval (sk−1,q−1, sk−1,q)
evaluated at s−k−1,q.

Substituting the solution w(s−k−1,q) in (45) and then in (44), and
by iterating for all q modes one obtains the linear discrete time
system

w(t−k ) = H(p)w(t−k−1) + N(p)vk−1 + I(p){uk−1}, (46)

with solution (12), where

H(p) =

q∏
i=1

eAidi pΠi (47a)

I(p){uk−1} =

q∑
i=1

q∏
j=i+1

eA jd j pΠ j

∫ ci

ci−1

eAi(ci−ξ)Biuk−1(ξ)dξ (47b)

N(p) =
[ q∏

i=1

(eAidi pΠi)Q1

q∏
i=2

(eAidi pΠi)Q2 . . . eAqdqpQq
]
,

(47c)

and ci are given by (8) with i ∈ Σ. 2

Proof of Lemma 8.
The solution of (10) is given by (12) where w0 = 0. Let `(p)

be the number of consecutive periods of length p inside [0,∆],
i.e., ∆ − p < p`(p) ≤ ∆. Note that p`(p) = O(1). Taking into
account that Π2

1 = Π1, the expression (12) can be rewritten as

w(t−k ) =

k−2∑
i=0

H(p)k−1−i(Π1N(p)vi + Π1I(p){ui})

+ N(p)vk−1 + I(p){uk−1},

for k = 2, . . . , `(p) and the same expression without the first
sum for k = 1. By using (1) in (47a) and (47c) we obtain

H(p) = Π∩ + O(p),

N(p) =
[
ΠqΠq−1 · · ·Π2Q1 + O(p) . . . Qq + O(p)

]
,

and by invoking the assumption (iv), N(p) = O(p). Further-
more, invoking (iii) and (4),

H(p)k−1 = O(1), k = 1, . . . , `(p).

Finally, taking into account the general bound ‖
∫ b

a f ‖ ≤ (b −
a)‖ f ‖∞ and using (1) in (47b), it follows

I(p){ui} = O(p)‖ui‖∞ = O(p2), i = 0, . . . , `(p) − 1,

where we also used (i).
Hence it follows, together with assumptions (i) and (ii),

w(t−k ) = (k − 1)O(p2) + O(p2),

for k = 1, . . . , `(p). Since `(p)O(p2) = O(p) from the equation
above we obtain

w(t−k ) = O(p) as well as w(t+k ) = O(p), (48)

for k = 1, . . . , `(p). It remains to be shown that w(t) = O(p) for
t ∈ (tk, tk+1) with k = 1, . . . , `(p). The solution of (10) for any
τ ∈ [sk,i, sk,i+1) and for any i ∈ Σ can be written as follows

w(τ) = eAi(τ−sk,i)w(s+
k,i) +

∫ τ

sk,i

eAi(τ−ξ)Biu(ξ)dξ.
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Considering the Taylor expression (1) with s = τ − sk,i and by
applying (i) we have

w(τ) = (I + O(p))w(s+
k,i) + O(p2) = w(s+

k,i) + O(p). (49)

By concatenating (49) for increasing values of i ∈ Σ and by
using (48) together with

w(s+
k,i) = Πiw(s−k,i) + Qivsk,i = Πiw(s−k,i) + O(p),

∀i ∈ Σ; we obtain that w(τ) = O(p) ∀τ ∈ [tk, tk+1) and k =

1, . . . , `(p), which completes the proof. 2

Proof of Theorem 17
The proof proceeds in three steps.
Step 1: We show that (23) holds for t = t1 = p.
Invoking Remark 13, the impulse-free part of the solution

of (13) and the solution of (21) at t1 can be written as

xσ,p(t+1 ) = Π1xσ,p(t−1 ) = Π1Hdiff(p)x0

xav(t1) = Hav(p)Π∩x0,

where Hav(p) = eAav p.
By taking into account the Taylor approximation (1), we

have

Hdiff(p) = Π∩ + Ãp + O(p2) = Π∩ + O(p) (50a)

Hav(p) = I + Aav p + O(p2) = I + O(p), (50b)

where

Ã := Adiff
q Π∩dq + ΠqAdiff

q-1Πq-1 · · ·Π1dq−1 + . . .

+ ΠqΠq-1 · · ·Π2Adiff
2 Π1d2 + Π∩Adiff

1 d1.

Then

xσ,p(t+1 ) − xav(t1) = (Π1
(
Π∩ + O(p)

)
−

(
I + O(p)

)
Π∩)x0

=
(
Π1Π∩ − Π∩

)
x0 + O(p) = O(p). (51)

where we used Π1Π∩x0 = Π∩x0 because of (PA.1).
Step 2: We show that (23) holds for time instants multiples

of the the period p, i.e. for any {tk}
`(p)
k=2 where `(p) is the integer

such that ∆ − p < p`(p) ≤ ∆. Clearly p`(p) = O(1).
By applying the Taylor approximation (1) to the solution of the
impulse-free part of the switched system, we have

xσ,p(t+k ) = Π1Hk
diff(p)x0 =

(
Π∩ + Ãp + O(p2)

)k x0

=
(
Π∩ + O(p)

)(
Π∩ + Ãp + O(p2)

)k−2(
Π∩ + O(p)

)
x0

for k = 2, . . . , `(p). Taking into account (PA.1) together with
Lemma 2, and by applying (4) we obtain

xσ,p(t+k ) = Π∩
(
Π∩ + Ãp + O(p2)

)k−2
Π∩x0 + O(p).

Invoking (1) and (4) we can express the solution of the averaged
system as

xav(tk) = Hav(p)kΠ∩x0

= Π∩
(
Π∩ + Aav p + O(p2)

)k−2
Π∩x0 + O(p).

Hence, invoking Π∩ÃΠ∩ = Π∩AavΠ∩ and (5), we arrive at

xσ,p(t+k ) − xav(tk) = Π∩
((
Π∩ + Ãp + O(p2)

)k−2

−
(
Π∩ + Aav p + O(p2)

)k−2
)
Π∩x0 + O(p) = O(p), (52)

for k = 2, . . . , `(p).
Step 3: We show that (23) holds for time instants different

from multiples of the period p.
The solution of (13) and (21) for any τ ∈ [sk,i, sk,i+1) with

i ∈ Σ and k ∈ N, can be written respectively as

xσ,p(τ) = eAdiff
i (τ−sk,i)xσ,p(s+

k,i) (53a)

xav(τ) = eAav(τ−sk,i)xav(sk,i). (53b)

Considering (1) with s = τ − sk,i we have

xσ,p(τ) − xav(τ) = xσ,p(s+
k,i) − xav(sk,i) + O(p). (54)

Taking into account Remark 15 we can write

xσ,p(s+
k,i) − xav(sk,i) = Πixσ,p(s−k,i) − xav(sk,i)

= Πi(xσ,p(s−k,i) − xav(sk,i)). (55)

Then by concatenating (54) for increasing values of i ∈ Σ and
k = 1, . . . , `(p), and by using (51) and (52) it follows that (23)
holds ∀t ∈ [p,∆]. 2

The proof of Theorem 23 is based on the following Lemma.

Lemma 32. Consider the operator Idiff(p) given in (20b) and
let

Iav(p){u} :=
∫ p

0
eAav(p−ξ)Bavu(ξ)dξ.

Assume that (PA.2) holds and that u : R+ → Rm is Lipschitz
continuous. Then

Π∩Idiff(p){u} − Iav(p){u} = O(p2), (56)

Proof.
Applying the Taylor approximation of the exponential ma-

trix (1) to Idiff(p) and Iav(p) we obtain

Idiff(p){u} =

q∑
i=1

[(
ΠqΠq−1 · · ·Πi+1 + O(p)

)
×

×

∫ ci

ci−1

(I + O(p)
)
Bdiff

i u(ξ)dξ
]

(57a)

Iav(p){u} =

∫ p

0

(
I + O(p)

)
Bavu(ξ)dξ, (57b)

where we used that O(ci − ξ) can be substituted by O(p) since
(ci − ξ) ≤ p for all i ∈ Σ.
Furthermore taking into account that 1

b−a

∫ b
a f (t)dt = f (α), with

α ∈ [a, b] and (PA.2) we have

Π∩Idiff(p){u} =

q∑
i=1

Π∩Bdiff
i u(αi)di p + O(p2) (58a)

Iav(p){u} = Bavu(αq+1)p + O(p2), (58b)
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where αi ∈ [ci−1, ci] and αq+1 ∈ [0, p]. Hence, considering∥∥∥∥∥∥∥(
q∑

i=1

Π∩diBdiff
i u(αi) p

)
− Bavu(αq+1) p

∥∥∥∥∥∥∥
≤

q∑
i=1

∥∥∥Π∩diBdiff
i u(αi) p − Π∩diBdiff

i u(αq+1) p
∥∥∥

≤

q∑
i=1

∥∥∥Π∩Bdiff
i

∥∥∥ L
∥∥∥αi − αq+1

∥∥∥ di p

≤

q∑
i=1

∥∥∥Π∩Bdiff
i

∥∥∥ L di p2,

where L > 0 is the Lipschitz-constant of u. By combining the
last inequality with (58) we obtain that (56) holds. 2

Proof of Theorem 23
First recall, that the solutions of (13) are given by (19) and

it is easily seen that the solutions of (21) are given by

xav(t−k ) = Hav(p)kΠ∩x0 +

k−1∑
i=0

Hav(p)k−1−iIav(p){ui},

where Hav(p) = eAav p, Iav(p) is given as in Lemma 32 and ui

is defined analogously as in Lemma 7. Due to assumption (PA)
the averaging result (23) for the homogeneous part holds, hence

∀k = 1, . . . , `(p) : Hdiff(p)k x0 − Hav(p)kΠ∩x0 = O(p). (59)

By considering (50), taking into account (4) and (PA.1) and not-
ing that Idiff(p){ui} and Iav(p){ui} are O(p) functions we obtain

xσ,p(t+k ) − xav(tk) =

k−2∑
i=0

(Hdiff(p)k−1−iΠ∩Idiff(p){ui}

− Hav(p)k−1−iIav(p){ui}) + O(p). (60)

For j = 1, . . . , `(p) − 1 and some generic u : [0, p] → Rm we
have

Hdiff(p) jΠ∩Idiff(p){u} − Hav(p) jIav(p){u}

= (Hdiff(p) j − Hav(p) jΠ∩)Π∩Idiff(p){u}

+ Hav(p) j(Π∩Idiff(p){u} − Iav(p){u}) = O(p2),

where we used (59), Lemma 32 and (4). Plugging this into (60),
we have that

xσ,p(t+k ) − xav(tk) = (k − 2)O(p2) + O(p) = O(p) ∀{tk}
`(p)
k=1 .

Analogously as in Step 3 of the proof of Theorem 17 we can
now conclude the proof. 2

Proof of Proposition 25.
By using (57) and noting that the functions Idiff(p){u} and

Iav(p){u} are O(p) we have

Π∩Idiff(p){u} − Iav(p){u}

=

q∑
i=0

∫ ci+1

ci

Π∩Bdiff
i u(ξ)dξ −

∫ p

0
Bavu(ξ)dξ + O(p2)

=

q∑
i=0

∫ ci+1

ci

Π∩(Bdiff
i − Bav)u(ξ)dξ + O(p2), (61)

where j = 1, . . . , `(p) − 1. Then considering that

Π∩
(
Bdiff

i − Bdiff
i di −

∑
h,i∈Σ

Bdiff
h dh

)
= Π∩

∑
h,i∈Σ

(Bdiff
i − Bdiff

h )dh, (62)

where we use di = 1 −
∑

h,i∈Σ dh with i ∈ Σ. By combining (61)
and (62) with (60) and taking into account (23), the averaging
result (25) holds for any {tk}

`(p)
k=1 . It is easy to prove that (25) also

holds for all time instants different from multiples of p, hence
the proof is complete. 2
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