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Abstract— Averaging is widely used for approximating the
dynamics of switched systems. The validity of an averaged
model typically depends on the switching frequency and on
some technicalities regarding the switched system structure. For
homogeneous linear switched differential algebraic equations it
is known that an averaged model can be obtained. In this paper
an averaging result for non-homogeneous switched systems is
presented. A switched electrical circuit illustrates the practical
interest of the result.

I. INTRODUCTION

In this paper the averaging problem for non-homogeneous
systems represented by means of differential algebraic equa-
tions (DAEs) is considered. Switched DAEs systems are
given by

Eiẋ(t) = Aix(t) +Biu(t) on t ∈ [sk,i , sk,i+1), (1a)

x(0−) = x0 ∈ Rn, (1b)

with Ei, Ai ∈ Rn×n, Bi ∈ Rn×m and sk,i, sk,i+1 the
switching time instants where i = 1, . . . ,q ∈ N, indicates
the active mode. Physical systems whose state variables
satisfy certain algebraic constraints alongside some differ-
ential equations, can be naturally modeled with DAEs, [1]–
[4]. The switched DAEs arise naturally when this kind of
systems change their model during the time, which occurs
in many practical engineering systems [5], [6]. The analysis
of switched DAEs is complicated by the interactions be-
tween the continuous dynamics of modes and the switching
signal which determines the active mode. A possible way
to circumvent some of these difficulties is the averaging
approach; if the frequency of the periodic switching signal
is high compared to the dynamics of the continuous state
variables it is possible to give an explicit formulation of a
(simpler) averaged model which approximates in some sense
the slow dynamics of the system [7], [8]. The averaging
theory for switched systems has a big interest in the control
theory due to the wide field of application such as power
electronic systems, multi-agent systems [9], synchronization
of oscillators [10], [11], pneumatic systems [12], switched
controllers [13], [14], congestion control mechanisms [15],
robotic manipulators [16], nonlinear circuits [17], dynamical
networks [18], biological systems [19]. Different aspects
have been investigated in the literature dealing with the
averaging for switched systems: harmonic analysis with pe-
riodic switchings [20], exponential splitting for modes repre-
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sented by ordinary differential equations (ODEs) [21], dither-
ing [22], hybrid behaviors [23]; for an overview see [24].

The averaging for switched DAEs is a nontrivial extension
of the switched ODEs case due to the presence of jumps in
the solution. An averaged model for homogeneous switched
DAE systems with two modes is proposed in [25], this result
is extended to the case of multi-mode switched DAEs in [26]
while in [27] an averaging result with relaxed assumptions is
presented. Nevertheless this result cannot be directly applied
to the case of non homogeneous systems in which the input
function is not necessary of order of the switching period.
The averaging result for non-homogeneous switched DAEs
proposed in this paper is based on relaxed assumptions and
is valid also for multiple modes.

The paper is organized as follows. Section II presents a
brief reminder on the theory of switched DAEs. In Sec. III
the averaging result is proved. In Sec. IV numerical results
for a switched capacitor electrical circuit motivate the prac-
tical interest of the theoretical result. The conclusions are
presented in Sec. V.

II. PRELIMINARIES

Throughout the paper the following notation is used. x(t−)
denote the left-sided limit of the x at t ∈ R, i.e. x(t−) :=
limε↘0 x(t− ε), while the right-sided limit x(t+) is defined
analogously; p ∈ R is the switching period, tk = kp is the
time instant k-th multiple of p and sk,i ∈ R is the switching
time instant when the mode i becomes active between tk and
tk+1, with k being a nonnegative integer.

A. Property of regularity pair matrices

A matrix pair (E,A) ∈ Rn×n × Rn×n is said regular, if
the polynomial det(sE −A) is not the zero polynomial.

Proposition 1 (Quasi-Weierstrass [28], [29]): A matrix
pair (E,A) ∈ Rn×n × Rn×n is regular if and only if there
exist invertible transformation matrices S, T ∈ Rn×n which
put (E,A) into quasi Weierstrass form

(SET, SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
where N ∈ Rn2×n2 , with 0 ≤ n2 ≤ n is a nilpotent matrix,
J ∈ Rn1×n1 with n1 := n− n2 is some matrix and I is the
identity matrix of the appropriate size.
In [29], [30] is shown that the transformation matrices S and
T can be obtained via the so called Wong sequences, [31].

Based on the quasi-Weierstrass form one can define the
following flow matrix and projectors.



Definition 1 (Flow matrix, [32]): Consider a regular ma-
trix pair (E,A) and its quasi Weierstrass form. The flow
matrix Adiff of (E,A) is given by

Adiff = T

[
J 0
0 0

]
T−1. (2)

Definition 2 (Consistency, differential and impulsive projectors):

Consider a regular matrix pair (E,A) and its quasi
Weierstrass form. The consistency projector Π, the
differential projector Πdiff and the impulsive projector Πimp

of the matrix pair (E,A) are defined respectively as follows

Π := T

[
I 0
0 0

]
T−1, I ∈ Rn1×n1 (3a)

Πdiff := T

[
I 0
0 0

]
S, I ∈ Rn1×n1 (3b)

Πimp := T

[
0 0
0 I

]
S, I ∈ Rn2×n2 , (3c)

From (2) and (3) the following properties can be simply
verified:

Adiff = ΠdiffA, Eimp = ΠimpE.

Note that only the consistency projector is a projector in the
usual sense (i.e., it is an idempotent matrix Πj = Π, j ∈ N).

Furthermore, it can be shown [33] that the projectors don’t
depend on the choice of the matrices T and S which bring
to the quasi Weierstrass form of the matrix pair (E,A).

B. Solution theory for switched DAEs
Consider the non-homogeneous switched DAE system (1)

with q modes and the switching time instants for each k ∈ N
defined as follows

sk,1 := kp, sk,i := kp+

i−1∑
j=1

djp (4a)

tk := sk,1, tk+1 := sk+1,1 = (k + 1)p (4b)

with i = 2, . . . ,q, p > 0 the switching period and di ∈ (0, 1)
the duty cycle of i-th mode, see Fig. 1.

Throughout the work it is assumed that (Ei, Ai) are
regular matrix pairs and that the switched DAEs is impulse
free. Note that impulse-freeness does not exclude jumps in
the solution; for more details on impulses and distributional
solutions see e.g. [5]. Furthermore some preliminary results
concerning the convergence of the Dirac impulses are proved
in [34]. The (impulse-free) solution of (1) is obtained by
“concatenating” the solution of each mode, that can be
written as follows

x(t) = eA
diff
i tΠix(s−k,i) +

∫ t

sk,i

eA
diff
i (t−s)Πdiff

i Biu(s)ds

−
n−1∑
i=0

(Eimp
i )iΠimp

i Biu(t)(i) (5)

with t ∈ (sk,i, sk,i+1) and the initial condition of the i-th
mode is given by

x(s+k,i) = Πix(s−k,i)−
n−1∑
i=0

(Eimp
i )iΠimp

i Biu
(i)(s+k,i) (6)

d1p d2p dqp

tk sk,2 sk,3 sk,q tk+1tk−1

Fig. 1. Graphical representation of the time interval [tk−1, tk+1], with
tk = kp, tk+1 = kp+ p and sk,i := kp+

∑i−1
j=1 djp i = 2, ...,q.

where x(s−k,i) is the solution of mode i− 1 evaluated at the
time instant time s−k,i. The consistency projector Πi plays a
role in the presence of possible inconsistent initial conditions
at the switching time instants sk,i, i.e., when the i-th mode
is activated.

C. Averaging for homogeneous switched DAEs

Definition 3 (Big O notation): Consider any functions
f : (0,∞) → V and g : (0,∞) → (0,∞), where V is
some normed vector space with norm ‖ · ‖. We say that f(p)
is an O(g(p)) function (f(p) = O(g(p)) for short), if there
exist constants α and p̄ > 0 such that

‖f(p)‖ ≤ αg(p), ∀p ∈ (0, p̄].

Given a compact set J ∈ (0,∞) we say that

f(t)− g(t) = O(p), ∀t ∈ J

if the difference of two functions is O(p) uniformly in t, i.e.
the constant α is independent of t.
The following averaging result for homogeneous switched
DAEs is already known.

Proposition 2 (Averaging for homogeneous switched DAEs [25]):

Consider an homogeneous-switched DAE system with flow
matrices Adiff

i and consistency projectors Πi. Assume that
the consistency projectors commute, i.e.,

ΠiΠj = ΠjΠi, ∀i 6= j ∈ {1, ...,q}. (7)

Then the corresponding averaged system is given by

ẋav = Aavxav, xav(0) = Π∩x0 (8)

where

Aav := Π∩(Adiff
1 d1 +Adiff

2 d2 + ...+Adiff
q dq)Π∩, (9a)

Π∩ := ΠqΠq−1 · · ·Π2Π1, (9b)

and x0 ∈ Rn. Consider an arbitrary constant ∆ > p, then
the following holds

xσ,p(t)− xav(t) = O(p) ∀t ∈ [p,∆] (10)

where xσ,p denotes the (impulse-free) solution of the ho-
mogeneous switched system and xav is the (continuously
differentiable) solution of (8).
Note that if the projectors commute then the amplitude of
the state jumps converge to zero when the switching period
tends to zero. Indeed in the limit the solution of the switched
DAE coincides with a solution of an ODE (which does not
exhibit jumps).



III. MAIN RESULT

Adding an input u(t) to a switched homogenous DAE
system, may change the behaviour of the system in such a
way that the averaging result is not consistent; in the limit the
averaged solution does not converge to the switched solution,
as shown in the following numerical example.

Example 1: Consider an homogeneous switched system
with two modes described by the following matrices

E1 =

[
1 0
0 0

]
A1 =

[
1 −1
0 2

]
E2 =

[
1 0
0 1

]
A2 =

[
3 4
−2 1

]
,

where the consistency, differential and impulsive projectors
of the first mode are given by

Π1 =

[
1 0
0 0

]
, Πdiff

1 =

[
1 1

2
0 0

]
, Πimp

1 =

[
0 0
0 1

2

]
,

while the second mode is described by an ODE then Π2 =
Πdiff

2 are identity matrices while Πimp
2 is a zero matrix.

The consistency projectors commute, hence the averaging
result holds. Consider now the non-homogeneous system in
the form (1) with the same matrix pairs (Ei, Ai) reported
above and the input matrices B1 =

[
1 2

]>
, B2 =

[
1 0

]>
.

In Fig. 2 the trajectories of the switched system are shown
when u(t) = 5. It it can be seen that, although the first state
variable seems to converge, the second state variable clearly
does not converge for an increasing switching frequency.
It is of interest to analyze under which particular assumptions
an averaged model for non-homogeneous DAEs is still
consistent; when one includes the presence of an exogenous
input starting from an homogeneous DAEs for which the
averaging result holds. In particular we consider exogenous
inputs which are Lipschitz.

Definition 4 (Lipschitz function): A function f(ξ) : R→
Rq is Lipschitz if there exists a positive constant L such that
for all ξ1, ξ2 the following inequality

‖f(ξ1)− f(ξ2)‖ ≤ L‖ξ1 − ξ2‖

holds.
Theorem 1: Consider the regular switched DAE (1) with

periodic switching of period p > 0 and with corresponding
consistency, differential and impulse projectors. Assume that

(i) the consistency projectors commute, i.e. (7),
(ii) the input u(t) : R→ Rm is Lipschitz with constant L,

(iii) Πimp
i Bi = 0, i = 1, 2, ...,q.

Consider the following averaged model

ẋav(t) = Aavxav(t) +Bavu(t) (11a)

xav(0−) = Π∩x0, (11b)

where

Bav := Π∩(Bdiff
1 d1 +Bdiff

2 d2 + ...+Bdiff
q dq)

Aav, Π∩ given by (9), and x0 ∈ Rn. Consider an arbitrary
constant ∆ > p, then the following holds

xσ,p(t)− xav(t) = O(p), ∀t ∈ [p,∆] (12)
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Fig. 2. Time evolutions of the state components for slow switching (p =
0.1s, left) and fast switching (p = 0.02s, right). The trajectories of the
switched DAE are colored according to the active mode (mode 1 blue,
mode 2 green).

where xσ,p and xav are the solutions of the switched and of
the averaged systems, respectively.

In Section IV the feasibility of the assumptions of Theo-
rem 1 are verified for a practical electrical circuit. In order to
prove the main result the following two lemmas are needed.

Lemma 1: Consider the switched DAEs (1) with switch-
ing period p > 0, the corresponding flow matrices and
consistency, differential and impulsive projectors. Assume
that

Πimp
i Bi = 0, i = 1, 2, ...,q. (13)

Then the (impulse-free) solution behavior of (1) is equivalent
to the solution behavior of the following switched ODE with
jumps

ẋ(t) = Adiff
i x(t) +Bdiff

i u(t), t ∈ (sk,i, sk,i+1) (14a)

x(s+k,i) = Πix(s−k,i) (14b)

x(0−) = Π∩x0 (14c)

where Bdiff
i = Πdiff

i Bi and the switching times are given
by (4).

Proof: The proof directly follows by considering the
solution (5) of a non-homogeneous DAE together with (13).

Lemma 2: Consider the following functions

G(p){u} =

q∑
i=1

Fq · · ·Fi+1Qiu(αi)dip

Gav(p){u} = Qavu(αq+1)p

with Fi ∈ Rn×n, Qi, Qav ∈ Rn×m, i = 1, ...,q, q ∈ N,
αi ∈ R.

Assume that
(i) u(t) : R→ Rm is Lipschitz with constant L,

(ii) Fi commute, i.e. FiFj = FjFi, i 6= j ∈ {1, ...,q},
(iii) Qav = F∩(Q1d1 +Q2d2 + ...Qqdq), F∩ = Fq · · ·F1,
(iv) |αi − αq+1| ≤ βip with βi constants, i = 1, . . . , q.

Then
F∩G(p){u} − Gav(p){u} = O(p2).



Proof: Due to the commutativity property one has that

‖F∩G(p){u}−Gav(p){u}‖ =

‖
q∑
i=1

(F∩Qiu(αi)dip)−Qavu(αq+1)p‖

=

q∑
i=1

‖(F∩Qiu(αi)dip− F∩Qiu(αq+1)dip‖

=

q∑
i=1

‖F∩Qi‖‖u(αi)− u(αq+1)‖dip

≤
q∑
i=1

‖F∩Qi‖L‖αi − αq+1‖dip

≤
q∑
i=1

‖F∩Qi‖Ldiβip2

Proof of Theorem 1. Consider the solution of the switched
ODE (14) on the interval (sk−1,q, tk) evaluated at t−k :

x(t−k ) = eA
diff
q dqpx(s+k−1,q) +

∫ tk

sk−1,q

eA
diff
q (tk−ξ)Bdiff

q u(ξ)dξ

(15)
where

x(s+k−1,q) = Πqx(s−k−1,q) (16)

and x(s−k−1,q) is the solution on the interval
(sk−1,q−1, sk−1,q) evaluated at s−k−1,q. Substituting
the solution x(s−k−1,q) in (15) and in (16) and iterating for
all q modes one obtains a linear discrete time system for
the interval (tk−1, tk)

x(t−k ) = H(p)x(t−k−1) + I(p){uk−1} (17)

where uk−1 is the input in the time interval (tk−1, tk)
translated into the time interval (0, p), i.e., uk−1 : [0, p] →
Rm with ξ 7→ u(ξ + tk−1), and

H(p) =

q∏
i=1

eA
diff
i dipΠi (18a)

I(p){uk−1} =

q∑
i=1

q∏
j=i+1

eA
diff
j djpΠj

∫ ci

ci−1

eA
diff
i (ci−ξ)Bdiff

i uk−1(ξ)dξ

(18b)

where the following notation has been adopted∏̀
j=k

Mj := M`M`−1 · · ·Mk+1Mk, ci =

i∑
j=1

djp, c0 = 0,

with i = 1, 2, ...,q. The solution of (17) for all k ∈ N is

x(t−k ) = H(p)kx0 +

k−1∑
i=0

H(p)k−1−iI(p){ui}. (19)

Consider the solution of the averaged system (11) in the
interval (tk−1, tk) then for all k ∈ N one as

xav(t−k ) = Hav(p)kΠ∩x0 +

k−1∑
i=0

Hav(p)k−1−iIav(p){ui}

(20)

with

Hav(p) = eAavp, Iav(p){uk−1} =

∫ p

0

eAav(p−ξ)Bavuk−1(ξ)dξ.

(21)

Considering the Taylor approximation of the exponential
matrix [7], one obtains

H(p) = Π∩ + O(p), Hav(p) = I + O(p)

I(p){uk−1} =

q∑
i=1

[(ΠqΠq−1 · · ·Πi+1 + O(p))

∫ ci

ci−1

(I

+ O(p))Bdiff
i uk−1(ξ)dξ],

Iav(p){uk−1} =

∫ p

0

(I + O(p− ξ))Bavuk−1(ξ)dξ

where we used that O(ci − ξ) can be substituted by O(p)
since (ci − ξ) ≤ p, for all i = 1, 2, ...,q.

Furthermore taking into account that 1
b−a

∫ b
a
f(t)dt =

f(α), with α ∈ [a, b] one has

I(p){uk−1} =

q∑
i=1

Πq · · ·Πi+1B
diff
i uk−1(αi)dip+ O(p2)

(22a)

Iav(p){uk−1} = Bavuk−1(αp+1)p+ O(p2) (22b)

where αi ∈ [ci−1, ci] and αq+1 ∈ [0, p].
Invoking [26, Lemma 2] one has that H(p)i and Hav(p)i

are O(1) functions for each i ∈ I. Further noting that
I(p){ui} and Iav(p){ui} are O(p) functions and taking
into account the averaging result (10) and k = O(1/p) one
obtains

‖x(tk)− xav(tk)‖ ≤ β1p+

k−1∑
i=0

‖H(p)k−2−iΠ∩I(p){ui}

−Hav(p)k−2−iIav(q){ui}‖. (23)

where β1 is a constant. For each i one can write

‖H(p)iΠ∩I(p){ui} −Hav(p)iIav(q){ui}‖ =

‖H(p)iΠ∩I(p){ui} −Hav(p)iΠ∩I(p){ui}
+Hav(p)iΠ∩I(p){ui} −Hav(p)iIav(q){ui}‖
≤ ‖(H(p)i −Hav(p)iΠ∩)Π∩I(p){ui}‖

+ ‖Hav(p)i(Π∩I(p){ui} − Iav(p){ui})‖.

Due to the averaging result (10) and invoking Lemma 2
and [26, Lemma 2] one obtains that

H(p)iΠ∩I(p){ui} −Hav(p)iIav(q){ui} = O(p2). (24)

Combining (23) and (24) the proof holds.

The Lipschitz assumption on the input u(t) can be relaxed
in the case of a switched non-homogeneous DAE with two
modes so as shown by the following result.

Proposition 3: Consider a switched DAE with two modes
where the assumption Theorem 1-(iii) and the averaging



result for the relative homogeneous system (10) hold. Then
if the following conditions holds

Bdiff
2 = Bdiff

1 , (25)

the averaged condition (12) is satisfied.
Proof: The solution of the switched ODE system (14)

and of the averaged system (11) can be written as (19)
and (20) respectively, then considering the averaged re-
sult (10) and [26, Lemma 2] one has:

‖x(tk)− xav(tk)‖ ≤ β1p+

k−1∑
i=0

‖Π∩I(p){ui} − Iav(p){ui}‖,

where β1 is a constant and I(p){ui} and Iav(p){ui} are
given by (22). Indeed, taking into account k = O(1/p)

‖x(tk)− xav(tk)‖ ≤
k−1∑
i=0

‖Π∩Π2

∫ d1p

0

Bdiff
1 ui(ξ)dξ

+

∫ p

d1p

Π∩B
diff
2 ui(ξ)dξ

−
∫ p

0

Bavui(ξ)dξ‖+ β2p

=

k−1∑
i=0

‖
∫ p

d1p

(Π∩B
diff
2 −Π∩B

diff
2 d2

−Π∩B
diff
1 d1)ui(ξ)dξ +

∫ d1p

0

(Π∩Π2B
diff
1

−Π∩Π2B
diff
1 d1 −Π∩B

diff
2 d2)ui(ξ)dξ‖+ β2p

=

k−1∑
i=0

‖Π∩(Bdiff
2 −Bdiff

1 )d1

∫ p

d1p

ui(ξ)dξ

+ Π∩(Bdiff
2 −Bdiff

1 )d2

∫ d1p

0

ui(ξ)dξ‖+ β2p

then if Bdiff
2 = Bdiff

1 the proof holds.

IV. ILLUSTRATIVE EXAMPLE

Consider the switched capacitor circuit shown in Figure 3.
By applying the Kirchhoff’s laws to the four different
configurations obtained by combining the different states of
the two ideal switches, the system can be described as a
switched DAEs where the state variables are the voltage
on the two capacitors and the current through the inductor
respectively, x = [vC1 , vC2 , iL]>. Note that the system is
non-homogeneous and the assumptions of Theorem 1 hold.

The matrices (Ei, Ai, Bi) are given by

E1 =
[
C1 0 0
0 C2 0
0 0 L

]
A1 =

[
0 0 1
0 − 1

R2
0

1 0 −R1

]
B1 =

[
0
0
1

]
,

E2 =
[
C1 C2 0
0 0 L
0 0 0

]
A2 =

[
0 − 1

R2
1

−1 0 −R1
1 −1 0

]
B2 =

[
0
1
0

]
,

E3 =
[
C1 C2 0
0 0 0
0 0 0

]
A3 =

[
0 − 1

R2
0

1 −1 0
0 0 1

]
B3 =

[
0
0
0

]
,

E4 =
[
C1 0 0
0 C2 0
0 0 0

]
A4 =

[
0 0 0
0 − 1

R2
0

0 0 1

]
B4 =

[
0
0
0

]
.

+
−u

R1 L
iL S1

C1

+

−

vC1

iC1

R2C2

+

−

vC2

iC2

S2

Fig. 3. Electrical circuit with two capacitors and one inductor.

where the i-th mode is defined according to the positions
of the switches S1, S2. In particular, the modes i =
1, 2, 3, 4 correspond to the switches pairs {S1, S2} in the
states {closed, open}, {closed, closed}, {open, closed} and
{open, open}, respectively.

Define the constants ρ1 = C1

C1+C2
and ρ2 = C2

C1+C2
. The

consistency projectors are

Π1 =
[
1 0 0
0 1 0
0 0 1

]
, Π2 =

[ ρ1 ρ2 0
ρ1 ρ2 0
0 0 1

]
,

Π3 =
[ ρ1 ρ2 0
ρ1 ρ2 0
0 0 0

]
, Π4 =

[
1 0 0
0 1 0
0 0 0

]
.

The consistency projectors commute then the averaged model
for the homogeneous part is consistent. The conditions The-
orem 1-(iii) hold where

Πimp
1 =

[
0 0 0
0 0 0
0 0 0

]
, Πimp

2 =
[ 0 0 ρ2
0 0 −ρ1
0 0 0

]
,

Πimp
3 =

[ 0 ρ2 0
0 −ρ1 0
0 0 1

]
, Πimp

4 =
[
0 0 0
0 0 0
0 0 1

]
.

The matrices of the averaged system are

Aav =

− ρ21
R2C1

− ρ22
R2C1

0

− ρ21
R2C1

− ρ22
R2C1

0

0 0 0

 , Bav = 0, Π∩ =
[ ρ1 ρ2 0
ρ1 ρ2 0
0 0 0

]
.

Note that the averaged model is independent from the input
due to the particular structure of Π∩.

For the simulations the following parameters have been
used: C1 = 80.36mF, C2 = 8.2mF, L = 5H, R2 =
20Ω, R1 = 10Ω and ū = 5V with duty cycles
(d1, d2, d3, d4) = (0.3, 0.4, 0.2, 0.1) and initial conditions
x0 = (1, 1, 0)>. The evolutions of the state variables in
the same time interval equal to 0.3s and for two different
switching periods are reported in Fig. 4. By comparing the
left and right sides of the figure it is evident that by reducing
the period, the error between the switched and the averaged
solutions decreases for all state components.

V. CONCLUSIONS

The averaging problem for switched systems with com-
mutations between multi-modes, each one described by non-
homogeneous linear differential algebraic equations (DAEs)
has been considered. It is shown that an averaged approach is
possible and the solution of the switched system converges
to the averaged system with an error of the order of the
switching period. A switched electrical circuit motivates
the practical interest of the proposed analysis. A possible
direction for future research is the extension of the averaging
result to the case of presence of jumps in the input.
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Fig. 4. Evolution of the state variables (first component top, second
component middle, third component bottom)for slow switching (p = 0.1s,
left) and fast switching (p = 0.02s, right). The averaging dynamics are
plotted with dotted black lines, while the trajectories of the switched DAE
are colored according to the active mode (mode 1 blue, mode 2 magenta,
mode 3 green, mode 4 red).
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1998.

[14] B. Sedghi, B. Srinivasav, and R. Longchamp, “Control of hybrid
systems via dehybridization,” in American Control Conference, An-
chorage, Alaska, USA, 2002, pp. 692–697.

[15] R. Marquez, E. Altman, and S. Solé-Álvarez, “Time-averaging of
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