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Abstract: The ability to detect topology variations in dynamical networks defined by
differential algebraic equations (DAEs) is considered. We characterize the existence of initial
states, for which topological changes are indiscernible. A key feature of our characterization is
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switched DAEs.
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1. INTRODUCTION

Control theory of networks and multiagent systems has
gained enormous popularity in the last years, because it
has numerous important applications (Olfati-Saber and
Murray, 2004; Beard et al., 2006; Scardovi and Sepulchre,
2009), and many unsolved mathematical questions. The
dynamics of such networks are governed by the underlying
topology (given by the edges of a graph) with predefined
coupling rules and the dynamics of each agent at the nodes
of the graph.

One important question in this context is, whether a
topological change in the form of a removal or addition of
an edge always has an effect on the dynamics. If not, this
may lead to severe problems in applications because faults
or attacks may stay unnoticed until much later, leading to
performance losses or even to instability phenomena.

The problem of detecting topology variations in dynamical
networks has therefore gained much attention in the last
years (Rahimian et al., 2012; Rahimian and Preciado,
2014; Rahimian et al., 2014; Torres et al., 2015; Battistelli
and Tesi, 2015, 2016). In all the aforementioned works,
however, the analysis is confined to networks whose dy-
namics can be described via ordinary differential equations
(ODEs). On the other hand, there are no results dealing
with networks of differential-algebraic equations (DAEs).
Networks of DAEs arise in several applications of practical
interest, examples being electrical and water distribution
networks, where the algebraic equations describe laws of
conservation of mass, energy and current.

In this note, inspired by the results in Battistelli and
Tesi (2015, 2016), we consider networks of DAEs with
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diffusive coupling, and study under what conditions topo-
logical changes (a removal or addition of an edge) cannot
be inferred from observations of the network dynamics,
referring to this phenomenon as “indiscernibility”. We
provide necessary and sufficient conditions for indiscerni-
bility that can be checked by only looking at the eigen-
values/eigenvectors of the nominal network configuration.
This property is extremely appealing since it avoids the
need to determine eigenvalues/eigenvectors of the various
“faulty” topologies. Interestingly, the proposed analysis is
general enough to include the case where each network
node obeys different dynamics (and has possibly different
state dimension).

The results presented here consider discernibility based
on the whole state trajectory. This is just a first step,
because once a topological change results in a change of
the dynamics, the next question is, whether this change
can actually be seen by a limited amount of sensors in
the network. This problem has been widely studied in
the general framework of switched systems; however, these
results do not take into account the special structure of
topological changes and it is a topic of future research
to consider discernibility also for networks with a limited
amount of measurements.

One should mention that the problem of detecting topo-
logical changes can also be cast as a topology identification
problem; for example, see Materassi and Innocenti (2010);
Sanandaji et al. (2011); Chowdhary et al. (2011). In fact,
detection and identification are certainly closely connected
problems. However, identification does not assume prior
knowledge of the nominal network configuration. This
information is crucial in order to relate nominal and mod-
ified network configurations, and to provide conditions on
discernibility that can be checked by only looking at the
properties of the nominal configuration.



This note is structured as follows: We first introduce a
nominal network of DAEs and the resulting model of
the overall dynamics (which by itself is a large DAE)
together with the possible topological changes. Afterwards
we formally define discernibility and state two main re-
sults highlighting an important connection between dis-
cernibility and certain eigenvalue-eigenvector pairs (The-
orem 2) which leads to a very simple characterization for
discernibility (Theorem 5) that can be checked solely in
terms of the nominal network configuration. Afterwards,
we consider the special case where all agents have the same
dynamics, and we show that discernibility only depends
on the graph topology (Theorem 8). In Section 5 we apply
our results to a power grid model. Finally, we relate our
results with mode-detection notions for switched DAEs in
Section 6.

Due to space limitations, the proofs are omitted.

2. PROBLEM STATEMENT

For a finite index set V = {1, 2, . . . , N}, N ∈ N, we con-
sider a family of differential algebraic equations (DAEs),
i ∈ V,

Eiẋi = Aixi + biui,

yi = cixi,
(1)

where Ei, Ai ∈ Rni×ni , ni ∈ N, bi, c
>
i ∈ Rni . These DAEs

are connected via a network given by an undirected graph
G = (V,E) with E ⊆ V×V and via diffusive coupling of
the form

ui =
∑

k:(i,k)∈E

wik(yk − yi), (2)

where wij > 0 with wji = wij for i, j ∈ V. Let x =
col{x1, . . . , xN} represent the overall state of the network.
The collective dynamics can be written in compact form
as

E ẋ = (A− BLC)x =: ALx (3)

where E = diag{E1, . . . , EN}, A = diag{A1, . . . , AN},
B = diag{b1, . . . , bN}, C = diag{c1, . . . , cN}, and where
L = [`i,j ]i,j∈V with

`i,j =


−wi,j , i 6= j, (i, j) ∈ E,

0, i 6= j, (i, j) 6∈ E,∑
k:(i,k)∈E

wi,k, i = j.
(4)

Note that L is the weighted Laplacian of G, in particular, L
is symmetric and positive semidefinite. The simplest case
for (3) is the case ni = 1, Ei = 1, Ai = 0, bi = 1, ci = 1
resulting in the overall system

ẋ = −Lx.

This case was studied in (Battistelli and Tesi, 2015) and
our goal is to expand the results therein to the more
general case above. An interesting example for the general
structure (3) is a model of a power grid, see Section 5 for
details.

Our goal is to study the effect of topological variations,
i.e., the removal (or addition) of an interconnection of the
network. In terms of the (weighted) Laplacian the removal
of an edge (i, j) ∈ E can be written as a rank-one change
as follows:

L = L− wij(ei − ej)(ei − ej)>, (5)

where ei ∈ Rn is the i-th unit vector. Connecting two
previously unconnected nodes leads to a similar rank-one
change:

L = L + wij(ei − ej)(ei − ej)>.
We are now interested in determining the existence of
nontrivial initial values such that the solution x of (3)
is identical to a solution x of

E ẋ = (A− BLC)x =: ALx. (6)

If this is the case, we are not able to detect the topological
change (e.g., induced by a fault or by an attack) even if
we have full knowledge of the state of the system. Only if
we can give a negative answer to the above question, it
makes sense to further study the mode detection problem
where we only have a subset of the state available for
measurement (which is not considered in this note and
is a topic of future research).

3. INDISCERNIBLE TOPOLOGICAL CHANGES

Definition 1. (Indiscernible topological changes). A topo-
logical change of (3) resulting in (6) is called possibly-
indiscernible iff it has at least one indiscernible initial state
x0 ∈ Rn \ {0}, i.e., there exists a solution x of (3) with
x(0) = x0 which is also a solution of (6). Otherwise, the
topological change is called discernible. 2

Note that one could also introduce the stronger notion of
indiscernible topological changes (and its weaker opposite:
possibly-discernible), which means that the topological
change cannot be detected no matter what the initial state
is (all initial states are indiscernible); however this is not
such a useful definition in the context considered here.

We first relate indiscernible initial states with common
eigenvalue-eigenvector pairs of (E ,AL) and (E ,AL).

Theorem 2. Consider (3) and (6) and assume that (E ,AL)
and (E ,AL) are regular matrix pairs, i.e., det(sE − AL)
and det(sE − AL) are nonzero polynomials in s. Then
there exists a nontrivial indiscernible initial state if, and
only if, there exists a common eigenvalue-eigenvector pair
(λ, v) ∈ C× Cn \ {0} of (E ,AL) and (E ,AL), i.e.,

(λE − AL)v = 0 = (λE − AL)v.

In particular, any common eigenvalue-eigenvector pair
(λ, v) leads to an indiscernible initial state given by the
real part of v.

Remark 3. (Regularity of (3)). The restriction to regular
DAEs (3) is needed to have existence and uniqueness of
solutions and is also needed to have a well-defined notion of
eigenvalues and eigenvectors. Note however, that we do not
assume that each agent has dynamics defined by a regular
DAE; in fact our two forthcoming examples show that it
may be a common situation to have non-regular DAEs for
the node dynamics. On the other hand, coupling regular
DAEs does not necessarily lead to regularity of the overall
DAE system. Altogether, the problem of characterizing
regularity of (3) is extremely important; however, we are
not aware of simple conditions which guarantee regularity
of the coupled system. 2

We now highlight a simple characterization for the exis-
tence of a common eigenvalue-eigenvector pair.
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Fig. 1. Simple RC-circuit.

Lemma 4. Let (λ, v) ∈ C × Cn \ {0} be an eigenvalue-
eigenvector pair of (E ,AL). Then (λ, v) is also an
eigenvalue-eigenvector of (E ,AL) if, and only if,

v ∈ ker(AL −AL)

This simple observation now leads to our main result.

Theorem 5. Consider a family of DAEs of the form (1)
connected by a network graph G = (V,E) with weighted
Laplacian L resulting in the overall system (3), which
we assume to be regular. Any regularity-preserving re-
moval/addition of the edge (i, j) is a possibly-indiscernible
topological change if, and only if, either bi = 0 and bj = 0
or there exists an eigenvector v ∈ Cn \ {0} of (E ,AL) with

(Cv)i = (Cv)j .

Note that indiscernibility can be solely checked in terms
of the nominal system parameters (E ,AL), in particular,
it is not necessary to calculate eigenvalues/eigenvectors
of the various “faulty” topologies. Another interesting
implication of Theorem 5 is that there is a vast literature
devoted to the computation of the eigenspace of Laplacian-
dependent matrices (for example, the eigenspace of a
Laplacian matrix is known analytically for many funda-
mental graphs). These results can be used to effectively
assess the conditions dictated by Theorem 5 (cf. Section
4).

We now illustrate the result by a variant of the well known
Wheatstone bridge.

Example 6. Consider an electrical RC circuit as shown
in Figure 1. Here vertices 1 and 2 are dynamic vertices
whereas vertices 3 and 4 lead to algebraic equations. In
the framework of (1) we have

Node 1 : −C1v̇1 = u1, y1 = v1,

Node 2 : −C2v̇2 = u2, y2 = v2,

Node 3 : 0 = u3, y3 = v3,

Node 4 : 0 = u4, y4 = v4,

together with the coupling conditions

u1 = R14(v1 − v4) +R13(v1 − v3),

u2 = R24(v2 − v4) +R23(v2 − v3),

u3 = R13(v3 − v1) +R23(v3 − v2) +R34(v3 − v4),

u4 = R14(v4 − v1) +R24(v4 − v2) +R34(v4 − v3).

Altogether, we get a system given by (3) with

E =

[−C1 0 0 0
0 −C2 0 0
0 0 0 0
0 0 0 0

]
, A = 04×4, B = I4, C = I4

and

L =

[
R13+R14 0 −R13 −R14

0 R23+R24 −R23 −R24

−R13 −R23 R13+R23+R34 −R34

−R14 −R24 −R34 R14+R24+R34

]
.

Then, (3) reduces to

E v̇(t) = Lv(t). (7)

Note that although the DAEs of node 3 and 4 are not
regular the coupled system (7) is regular for all positive
capacitor and resistor values. Assume now that all circuit
parameters are equally one, then the matrix pair (E ,L)
has the two finite eigenvalues λ1 = 0 and λ2 = −2 with
corresponding eigenvectors

v1 =

1
1
1
1

 , v2 =

 1
−1
0
0

 .

Since there exists an eigenvector and a pair (i, j) such that
the i-th and j-th entries are equal, the electrical circuits
has initial values where a removal of an edge could not be
detected. In fact, since all eigenvectors corresponding to
the finite eigenvalues have matching 3rd and 4th entries,
the removal of edge (3, 4) is undetectable for any consistent
initial value.

4. HOMOGENEOUS NETWORKS

In the homogeneous case, where all coupled systems are
identical, i.e., Ei = E, Ai = A, bi = b, ci = c and
ni = n for all i ∈ V, the overall dynamics can be written
in compact form as

E ẋ = ALx, (8)

where
E := (IN ⊗ E),

AL := (IN ⊗A)− L⊗ bc.
We will show that in this special case indiscernibility
is in fact independent of the system parameters and
only depends on the Laplacian of the connection graph,
provided a certain observability condition holds.

We first highlight the properties of eigenvalue-eigenvectors
pairs of (E ,AL) in the homogeneous case.

Lemma 7. Let α1, α2, . . . , αN ∈ R be the N real eigen-
values (counting multiples) of the symmetric Laplacian L.
Then

spec(E ,AL) =

N⋃
i=1

spec(E,A− αibc). (9)

Furthermore, let v be a (generalized) eigenvector of
(E ,AL) for an eigenvalue λ of (E ,AL) with λ ∈ spec(E,A−
αbc) for some eigenvalue α of L. Then

v = z ⊗ w (10)

where z is an eigenvector of L corresponding to α and w is
a (generalized) eigenvector of (E,A − αbc) corresponding
to λ. Moreover, if v and w are generalized eigenvectors,
then they have the same rank.

Using these results, we can obtain a more specific con-
ditions on the existence of non-null indiscernible states.
Specifically, we have the following result.



Theorem 8. Consider a family of identical DAEs (1) of the
form

Eẋ = Ax+ bu

y = cx

connected via the diffusive coupling (2) by a network with
weighted Laplacian L resulting in the overall system (8),
which we assume to be regular. Suppose furthermore that
b 6= 0 and that (E,A, c) is observable in the behavioral
sense, i.e, rank [ λE−Ac ] = n for all λ ∈ C, see e.g.
Berger et al. (2017). Then, any regularity-preserving re-
moval/addition of the edge (i, j) is a possibly-indiscernible
topological change if, and only if, there exists an eigenvec-
tor z ∈ Cn \ {0} of L such that

zi = zj .

In that case any such eigenvector leads to an indiscernible
initial state v = z ⊗ w as in (10).

The Laplacian matrix L always has eigenvalue zero
with corresponding eigenvector z = (1, 1, . . . , 1)>. Conse-
quently, any topological change of a homogeneous network
is possibly-indiscernible. This special eigenvector corre-
sponds to the situation where all subsystems start with the
same initial value; as a consequence, the diffusive coupling
is zero and a topological variation has no effect on the
dynamics. However, Theorem 8 also shows which initial
values may lead to indiscernibility and it is also reasonable
to expect that eigenvectors with zi ≈ zj give rise to initial
values where it is theoretically possible but difficult in
practice to detect topological changes.

Furthermore, we would like to stress that b 6= 0 is an
obvious assumption (otherwise there is no coupling) and
that the observability assumption on (E,A, c) is quite
natural, as otherwise there would be dynamics which
would not effect the output of the individual systems and
therefore are also not effected by the coupling structure.

5. TOPOLOGICAL CHANGES IN POWER GRIDS

We will show now how power grids can be modelled such
that they fit into our framework. In particular, we are able
to determine whether there are critical removal/additions
of power lines which may go undetected for certain initial
states even if we would have knowledge of the whole
state of the network. This may have important applica-
tion in the context of the security/vulnerability of cyber-
physical systems, for example, we are able to answer the
question whether an attacker can change the network
topology without the grid operators being able to detect
that change. Another application is determining the right
moment when to disconnect a power line (e.g., for main-
tenance) such that the effect on the remaining network is
negligible.

We use a power grid model described in (Groß et al., 2016),
which consists of p generators and q load buses. The i-th
generator is modeled as

α̇i(t) = ωi(t),

M iω̇i(t) = −Diωi(t)−Kiαi(t) + P ig(t)− P ie(t),
where αi = (αi1, α

i
2, . . . , α

i
ηi), ωi = (ωi1, ω

i
2, . . . , ω

i
ηi)

are the (incremental) angles and angular velocities of
the ηi ≥ 0 rotating masses of the generator, P ig =

(pig,1, p
i
g,2, . . . , p

i
g,ηi) is the generator power acting on

each of the ηi rotating masses (the turbines) and P ie =
(0, . . . , 0, pie) is the electrical power acting on the last
rotating mass (the actual generator); Mi, D

i,Ki ∈ Rηi×ηi
are the mass, damping and stiffness matrices, respectively.
Let θi(t) ∈ R be the voltage angle at the generator bus,
then the electrical power acting on the generator, can be
approximatly expressed as:

pie(t) =
1

zi

(
αiηi(t)− θ

i(t)
)
,

where zi > 0 is the transient reactance of the generator.
Finally, the linearized power flow equations are

pi(t) + pie(t) =

p+q∑
j=1

bij(θ
i(t)− θj(t))

at the generator buses i = 1, . . . , p and

pi(t) =

p+q∑
j=1

bij(θ
i(t)− θj(t))

at the load buses i = p+ 1, . . . , p+ q, where bij = bji ≥ 0
is the susceptance between bus i and j and pi(t) is the
external load at each bus. Assuming constant generator
power and constant loads, the generator and bus models
can be brought into the structure (1) via

xi = (pi, P ig
>
, αi
>
, ωi
>
, θi)>,

Ei =


1
Iηi

Iηi
M i

0

 ,

Ai =


0 0 0 0 0
0 0 0 0 0
0 0 0 I 0
0 I -(Ki+ 1

zi
eηie

>
ηi) -Di 1

zi
eηi

-1 0 - 1
zi
e>ηi 0 1

zi

 ,
Bi = eηi , Ci = e>ηi

for the generator buses i = 1, . . . , p and xi = (pi, θi)>,

Ei =

[
1 0
0 0

]
, Ai =

[
0 0
−1 0

]
, Bi =

[
0
1

]
, Ci = [0 1] ,

for the load buses i = p + 1, . . . , p + q; the coupling
equations for all buses are

ui =

p+q∑
j=1

bij(θ
i − θj),

where bij = bji ≥ 0 is the susceptance between buses i
and j. In (Groß et al., 2016) it was shown that the overall
DAE is regular if, and only if, each connected component
of the network graph contains at least one generator bus,
hence we can apply Theorem 5 to check whether there
are possibly-indiscernible topological changes. Note that
similar to the Wheatstone bridge example the DAEs cor-
responding the load buses are not regular.

Example 9. Consider a power grid system as in Section 5
with one generator which is connected to bus 1. Define

the vector v = (p1, P 1
g
>

, α1>, ω1>, θ1, p2, θ2, . . ., pq+1,

θq+1)> as follows:
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Fig. 2. Power grid of example 10

p1 =
1

z1
, P 1

g = − 1

z1
eη1 , α1 = 0, ω1 = 0

pi = 0, ∀i 6= 1, θi = 1, ∀i
Then v is an eigenvector to the eigenvalue zero of the
corresponding network DAE. It satisfies

Cv = (1 1 · · · 1)
>
,

hence the system is possibly indiscernible by Theorem 5.
This means it can happen in a power grid that there is
an equilibrium with no flow on a particular line and thus
switching of this line cannot be detected. However, as long
as there is a power flow on a line, a switch of this line will
affect the solution and thus be detected. 2

Example 9 is artificial in the sense that the power produced
at the generator is consumed at the same node, hence no
power is distributed trough the network. The following
example shows that indiscernible topological changes can
happen even when there is a power flow in the network.

Example 10. Consider the simple power network consist-
ing of one generator and two loads, connected as shown in
Figure 2.

Then it is easily seen that there is an eigenvector v corre-
sponding to the eigenvalue zero such the (Cv)2 = (Cv)3,
i.e., there are initial values for which a disconnection of
buses 2 and 3 remains undetected. These initial values
correspond to the situation where each load node gets
exactly the amount of power from the generator that is
consumed there, i.e., when there is no power flow between
buses 2 and 3. 2

Example 10 points towards an obvious principle in these
power grid models: A removal of a power line is unde-
tectable if there is no power flow on this line. However,
the latter situation is not an obvious necessary or suffi-
cient condition in terms of the formalism in Theorem 5.
Clarifying the connection between these conditions is a
topic of future research.

6. CONNECTIONS WITH SWITCHING SIGNAL
OBSERVABILITY

The problem of detecting topological changes in dynamical
networks can be seen as a special case of the mode-
detection problem in switched systems. It was recently
highlighted in (Küsters and Trenn, 2017) that the ability
to deduce the active mode from the measured output of
the system (σ-observability) in all situations reduces to
the ability to distinguish the outputs from systems with
constant switching signals. In particular, the effect of the
actual switching event (here the topological change) is
not taken into account. The weaker notion of switching

time observability (tS-observability) is concerned with the
problem of detecting the time of a switch and is actually
exactly the problem we studied here (see the forthcoming
Lemma 12). If a switch occurs it is also of interest
from which mode to which mode the system switched
(e.g., which power line was disconnected if a topological
change is detected). This mode-detection problem for non-
constant switching signals (σ1-observability) is in general
indeed weaker than σ-observability and stronger than tS-
observability.

In this section we want to investigate these three observ-
ability notions for the specially structured case considered
here. It turns out (see the forthcoming Theorem 13) that
all notion are in fact equivalent if the DAE-models have
index one (i.e., switches do not produce Dirac impulses
and the input is not differentiated).

Towards this end we first introduce the formal definitions
of σ-, σ1-, and tS-observability of a switched DAE of the
form

Eσẋ = Aσx (11)

where σ : R → {0, 1, . . . ,K}, K ∈ N, is a piecewise-
constant right-continuous switching signal, which is con-
stant on (−∞, t0) for some t0 > 0. Note that a switched
DAE may exhibit jumps and Dirac impulses in its solution,
hence we have to consider the space of piecewise-smooth
distributions (Trenn, 2009a, 2012) as the underlying solu-
tion space; in particular, x in (11) can only be evaluated
at t ∈ R as left-/right-limit denoted by x(t−)/x(t+) or as
the impulsive part, denoted by x[t], see Trenn (2009b) for
details. If each matrix pair (Ek,Ak), k ∈ {0, 1, . . . ,K} is
regular, then the switched DAE (11) is uniquely solvable
for any (possibly inconsistent) initial condition x(0−) =
x0 ∈ Rn and we will denote this solution by x(x0,σ). Note
that we assume the initial condition x0 to be consistent
with the initial mode σ(0).

When studying discernibility or mode-detection for (11) it
is necessary to exclude the zero initial state, because for an
identically zero state the trivial dynamics are unaffected
by the current value of the switching signal. While for
switched ODEs (where Ek = I for all k) it is sufficient to
exclude x0 = 0, the situation is a bit more complicated
in the switched DAE case, as it is possible that the state
jumps to zero later on. Therefore, we restrict our attention
to the following intervals

s(x0,σ) :=
{
t
∣∣ x(x0,σ)(t

+) 6= 0 ∨ x(x0,σ)[t] 6= 0
}
,

If the state jumps to zero at time tS , we have s(x0,σ) =
(−∞, tS) if there is no impulse at the switch and else
s(x0,σ) = (−∞, tS ]. The relevant switching times are then
denoted by

T(x0,σ) := { t | t is a discontinuity of σ } ∩ s(x0,σ).

We are now ready to formally define σ-, σ1-, and tS-
observability.

Definition 11. The regular switched DAE (11) is called

• σ-observable :⇔ for all σ, σ̃ and all x0 ∈ Rn it holds

σ|J 6= σ̃|J ⇒ x(x0,σ) 6= x(x0,σ̃), (12)

where J := s(x0,σ) ∪ s(x0,σ̃);
• σ1-observable :⇔ (12) holds for all x0 ∈ Rn and for

all σ, σ̃ with

1 ≤ min
{∣∣T(x0,σ)

∣∣ , ∣∣T(x0,σ̃)

∣∣} ;



• tS-observable :⇔ for all σ, σ̃ and all x0 ∈ R it holds

T(x0,σ) 6= T(x0,σ̃) ⇒ x(x0,σ) 6= x(x0,σ̃).

2

From these definitions, we can directly conclude

σ-obs. ⇒ σ1-obs. ⇒ tS-obs.; (13)

the converse is not true in general, cf. Küsters and Trenn
(2017) for the switched ODE case and Küsters et al. (2017)
for the switched DAE case.

We now relate tS-observability of the switched DAE
(11) with possible-discernibility of each mode pair, where
possible-discernibility of two modes (Ai, Ei) and (Aj , Ej)
is defined analogously as in Definition 1.

Lemma 12. Consider the switched DAE (11). It is tS-
observable if, and only if, the modes k ∈ {0, . . . ,K} are
pairwise possibly-discernible.

As the conditions for σ- and σ1-observability in Küsters
et al. (2017) are rather technical, we restrict the attention
here to DAEs having index one, i.e. the nilpotent matrix
in the quasi-Weierstrass form (see e.g. Berger et al. (2012))
of (E ,A) is zero or, equivalently, rank E = deg det(sE−A).
Note that the power grid model considered here has this
property.

Theorem 13. Consider the switched DAE (11) and assume
that each mode of the system (11) has index one. Then tS-,
σ1- and σ-observability are all equivalent and coincide with
pairwise possible-discernibility of the modes.

We will now embed the problem of detecting topological
changes in a network of DAEs as discussed above in the
framework of switched DAEs. Therefore consider a family
of (possibly non-regular) DAEs (1) connected by a graph
G = (V,E) with Laplacian L and corresponding matrix
pair (E0,A0) given by

E0 = E and A0 = A− BLC (14)

as in (3). Let L1, L2, . . ., LK , K ∈ N, denote the Laplacian
matrices resulting from all relevant (in particular, regu-
larity preserving) removal/addition of each of the edges
(i1, j1), . . . , (iK , jK) in E and

Ek = E and Ak = A− BLkC. (15)

Now we are interested in switching signals σ with σ(t) = 0
for t ≤ 0 and with at most one switch. In this case, tS-
observability is equivalent to mode 0 being discernible
from any other mode k ∈ {1, . . . ,K}. The condition for
switching signal observability remains unaffected.
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