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Abstract

Tracking of a reference signal (assumed bounded with essentially bounded deriva-
tive) is considered in a context of a class of nonlinear systems, with output y,
described by functional differential equations (a generalization of the class of linear
minimum-phase systems with positive high-frequency gain). The primary control
objective is tracking with prescribed accuracy: given λ > 0 (arbitrarily small), de-
termine a feedback strategy which ensures that, for every admissible system and
reference signal, the tracking error e = y − r is ultimately smaller than λ (that is,
‖e(t)‖ < λ for all t sufficiently large). The second objective is guaranteed transient
performance: the evolution of the tracking error should be contained in a prescribed
performance funnel F . Adopting the simple non-adaptive feedback control structure
u(t) = −k(t)e(t), it is shown that the above objectives can be attained if the gain
is generated by the nonlinear, memoryless feedback k(t) = KF (t, e(t)), where KF

is any continuous function exhibiting two specific properties, the first of which en-
sures that, if (t, e(t)) approaches the funnel boundary, then the gain attains values
sufficiently large to preclude boundary contact, and the second of which obviates
the need for large gain values away from the funnel boundary.

Key words: Output feedback, transient behaviour, tracking, functional differential
equations

1 Introduction

By way of motivation, consider the well-studied (see for example (Mareels,
1984; Morse, 1983; Willems and Byrnes, 1984)) class of finite-dimensional,
real, linear, minimum-phase, M -input (u(t)), M -output (y(t)) systems having
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high-frequency gain B ∈ RM×M with B + BT > 0. Systems of this class can,
in suitable coordinates, be expressed in the form of two coupled subsystems

ẏ(t) = A1y(t) + A2z(t) +Bu(t), y(0) = y0

ż(t) = A3y(t) + A4z(t), z(0) = z0





(1)

with y(t), u(t) ∈ RM , z(t) ∈ RN−M , and where A4 has spectrum in the open
left half complex plane. Introducing the linear operator T given by

(Ty)(t) := A1y(t) + A2

∫ t

0
exp(A4(t− s))A3y(s)ds (2)

and the function p given by p(t) := A2 exp(A4t)z
0, then system (1) can be

interpreted as

ẏ(t) = p(t) + (Ty)(t) +Bu(t), y(0) = y0. (3)

In a precursor (Ilchmann et al., 2002b) to the present paper, (1) formed a
prototype subclass of a considerably more general class of nonlinear systems
described by functional differential equations of the form

ẏ(t) = f
(
p(t), (Ty)(t), u(t)

)
, y[−h,0] = y0 ,

where, loosely speaking, the parameter h ≥ 0 quantifies system “memory”,
p may be thought of as a (bounded) disturbance term, and T is a nonlinear
causal operator. Whilst a full description of the system class is postponed to
Section 2, we remark here that diverse phenomena are incorporated within
the class including, for example, diffusion processes, delays (both point and
distributed) and hysteretic effects. For this general system class, the problem of
output tracking with prescribed asymptotic accuracy and prescribed transient
output behaviour was formulated, in (Ilchmann et al., 2002b), in terms of a
performance funnel F determined by the graph of the set-valued map t 7→
F (t) = {(t, e)| ϕ(t)‖e‖ < 1} ⊂ RM for suitably chosen ϕ; the goal was a control
structure which, for every admissible system and reference signal, ensures that
the graph of the tracking error e(·) is contained in F . This goal was achieved
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Fig. 1. Performance funnel F .

by the simple control structure u(t) = −k(t)e(t) with the gain generated by a
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nonlinear, memoryless feedback law of the form k(t) = KF(t, e(t)), where KF

is a continuous function such that, loosely speaking, the reciprocal 1/KF(t, e)
provides a particular measure of distance of (t, e) from the boundary ∂F of
the funnel F (with the effect that, if the error approaches the boundary, then
the gain increases which, in conjunction with a high-gain property of the
underlying system class, precludes contact with the boundary). The purpose

w = Ty

System

ẏ = f(p, w, u)

u(t) = −KF(t, e(t)) e(t)

Error feedback

r ∈ W 1,∞

−
+

y

e

w

u

Fig. 2. Universal error feedback control.

of the present paper, vis à vis its precursor (Ilchmann et al., 2002b), is to extend
the choice of admissible gain functions KF , allowing for greater flexibility in
the choice of measure of the distance to the funnel boundary. Colloquially
speaking, the controllers in (Ilchmann et al., 2002b) look “vertically” in the
funnel in the sense that, at time t, only the instantaneous funnel information
F (t) is used. This approach is typified by a gain function KF determined by
the reciprocal of the vertical distance to the funnel boundary

KF(t, e) =
ϕ(t)

1 − ϕ(t) ‖e‖ =
1

dist(e, ∂F (t))
, (4)

with the convention that, if ϕ(t) = 0, then dist(e, ∂F (t)) := ∞ (in which case
KF(t, e) = 0). By contrast, the present paper exploits the freedom to look also
“forward” in the funnel in the sense that, at time t, the funnel information
{F (τ)| τ ≥ t} is available for use. This approach has the potential to mitigate
large excursions in control values by sensing, in advance, rapid changes in the
funnel geometry and adjusting the control gain accordingly. The approach is
typified by a gain function KF determined by the reciprocal of the forward or
future distance to the funnel

KF(t, e) =
1

df(t, e)
, df (t, e) := inf

τ>t

√
(τ − t)2 +

(
dist(e, ∂F (τ))

)2
. (5)

Furthermore, to facilitate implementation, we also study a numerical future
distance (essentially a numerical approximation to (5)).

The control strategy, investigated in (Ilchmann et al., 2002b) and the present
paper, is essentially applicable to the same system class widely studied in
high-gain adaptive control. Loosely speaking, the system class encompasses
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Fig. 3. The distance df (t, e(t)) to the future funnel boundary, and the vertical
distance dist(e(t), ∂F (t)) to the funnel boundary.

nonlinear counterparts of the class of linear relative degree one systems with
stable zero dynamics and high-frequency gain of known sign. The main differ-
ences between the approach of the present paper (and its precursor (Ilchmann
et al., 2002b)) and adaptive control strategies in the literature (see (Ilchmann
et al., 2002a) and the reference therein) are: (i) prescribed transient behaviour
is guaranteed, (ii) the gain t 7→ k(t) is not a monotonically non-decreasing
function, (iii) the gain is not adaptively tuned by a dynamical system (c.f.
k̇ = ‖e‖2 in the adaptive context) but is simply a static, nonlinear (albeit
time-varying), though memoryless feedback, and (iv) growth assumptions on
the system nonlinearities are obviated.
Miller and Davison (Miller and Davison, 1991) have introduced a controller
which guarantees the “error to be less than an (arbitrarily small) prespecified
constant after an (arbitrarily small) prespecified period of time, with an (arbi-
trarily small) prespecified upper bound on the amount of overshoot.” However,
their controller is adaptive with monotonically non-decreasing gain, invokes
a piecewise constant switching strategy, and is less flexible in its scope for
shaping transient behaviour.

The paper is organised as follows. In Section 2, we make precise the underlying
system class and provide some examples. The control problem is formulated
in Section 3, wherein the class of reference signals and the performance fun-
nel are described. Section 4 elucidates the proposed output feedback control
and, in the main result (Theorem 2), establishes the requisite transient and
asymptotic behaviour of the closed-loop system. Finally, in Section 5, the flex-
ibility in the choice of gain functions KF , alluded to above, is illustrated via
diverse examples determined by a variety of measures of distance to the funnel
boundary.

We close this section with some remarks on notation. Throughout, R≥0 :=
[0,∞), R>0 := (0,∞), the inner product on RM is 〈x, y〉 = xTy, the Euclidean

norm on RM is given by ‖x‖ :=
√
xTx, and Bδ(ξ) :=

{
x ∈ Rn

∣∣∣ ‖x − ξ‖ < δ
}
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is the open ball of radius δ > 0 centred at ξ ∈ RM . The Euclidean distance of
x ∈ RM from a non-empty set A ⊂ RM is dist(x,A) := infa∈A ‖x − a‖. The
space of continuous functions S → RM is denoted by C(S; RM), L∞(I; RM)
is the space of measurable essentially bounded functions I → RM (I ⊂ R

an interval), with norm, ‖x‖∞ := ess supt∈I‖x(t)‖, L∞
loc(I; R

M) is the space
of measurable, locally essentially bounded functions I → RM , and finally
W 1,∞(R≥0; R

M) denotes the space of bounded locally absolutely continu-
ous functions r : R≥0 → RM with essentially bounded derivative and norm
‖x‖1,∞ := ‖x‖∞ + ‖ẋ‖∞.

2 System class Σ

Consider the class Σ of infinite-dimensional, nonlinear, M -input u, M -output
y systems (p, f, T ), given by a controlled nonlinear functional differential equa-
tion of the form

ẏ(t) = f
(
p(t), (Ty)(t), u(t)

)
, y[−h,0] = y0, h ≥ 0, y0 ∈ C

(
[−h, 0]; RM

)
(6)

having the following properties for some P,Q ∈ N:

1. p ∈ L∞(R≥0; R
P );

2. f ∈ C
(
RP × RQ × RM ; RM

)
;

3. for every non-empty compact subset C ⊆ RP × RQ and every sequence
(un) in RM\{0} the following property (akin to radial unboundedness or
weak coercivity) holds:

‖un‖ → ∞ as n→ ∞ =⇒ min
(v,w)∈C

〈un, f(v, w, un)〉
‖un‖

→ ∞ as n→ ∞ ;

4. T : C([−h,∞); RM) → L∞
loc(R≥0; R

Q) denotes an operator of class T ,
that is, an operator with the following three properties:
(a) for all δ > 0 there exists ∆ > 0 such that, for all x ∈ C

(
[−h,∞); RM

)
,

‖x‖∞ ≤ δ =⇒
∥∥∥Tx‖∞ ≤ ∆ ;

(b) for all t ≥ 0 and all x, ξ ∈ C
(
[−h,∞); RM

)

x|[−h,t] = ξ|[−h,t] =⇒ Tx|[0,t] = Tξ|[0,t] ;

(c) for all t ≥ 0 and all ζ ∈ C
(
[−h, t]; RM

)
there exist τ, δ, c > 0 such

that, for all x, ξ ∈ C
(
[−h,∞); RM

)
with x|[−h,t] = ζ = ξ|[−h,t] and

x(s), ξ(s) ∈ Bδ(ζ(t)) for all s ∈ [t, t+ τ ],

‖(Tx)(s) − (Tξ)(s)‖ ≤ c sup
s∈[t,t+τ ]

‖x(s) − ξ(s)‖ .
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Remark 1

(i) The function p in (6) may be thought of as a (bounded) disturbance term;
the non-negative constant h quantifies the “memory” of the system.

(ii) Property 3 generalizes the positive “high-frequency gain” concept in linear
systems of relative degree one.

(iii) It is straightforward to show that a necessary and sufficient condition for
Property 3 to hold is that, for S

M−1 := {u ∈ R
M | ‖u‖ = 1} and for every

compact set C ⊂ RP × RQ, the continuous function γC : R≥0 → R, defined
below, has the following property:

min
(v,w,u)∈C×SM−1

〈u, f(v, w, su)〉 =: γC(s) → ∞ as s→ ∞. (7)

(iv) Property 4(a) is a crucial “bounded-input, bounded-output” assumption on
the operator T (this generalizes the rôle of the minimum-phase condition in
the context of linear systems).

(v) Property 4(b) is an assumption of causality and Property 4(c) is a technical
assumption on T of a “locally Lipschitz” nature.

(vi) Let T ∈ T and t ≥ 0. Given x ∈ C([−h, t); RM) let xe denote an arbitrary
extension of x to C([−h,∞); RM). By virtue of Property 4(b), Txe|[0,t) is
uniquely determined by the function x in the sense that, the former is
independent of the extension xe chosen for the latter. Expanding on this
observation, we will adopt the following notational convention. For s ∈ [0, t),
we simply write (Tx)(s) in place of (Txe)(s) (where xe ∈ C([−h,∞); RM)
is any continuous extension of x).

In the remainder of this section, we present some examples of systems belong-
ing to the class Σ.

The linear prototype. With reference to finite-dimensional, linear, minimum-
phase systems of the form (1)–(3), positivity of B + BT ensures Property 3,
and the assumption that A4 is Hurwitz (minimum phase) ensures Property 4.

Infinite-dimensional linear systems. The class of finite-dimensional systems
considered in (1) can be extended to an infinite-dimensional setting by rein-
terpreting the operators A1, . . . , A4 in the system representation (1) as the
generating operators of a regular linear system (regular in the sense of (Weiss,
1994)). In particular, in this setting, A4 is assumed to be the generator of a
strongly continuous semigroup S = (St)t≥0 of bounded linear operators on a
Hilbert space X with norm ‖ · ‖X . Let X1 denote the space dom(A4) endowed
with the graph norm and X−1 denotes the completion of X with respect to

the norm ‖z‖−1 =
∥∥∥(s0I − A4)

−1z
∥∥∥

X
where s0 is any fixed element of the re-

solvent set of A4. Then A3 is assumed to be a bounded linear operator from
Rm to X−1 and A2 is assumed to be a bounded linear operator from X1 to
Rm. A1, B ∈ Rm×m.
If we assume that the semigroup S is exponentially stable and that the opera-

6



tor A2 extends to a bounded linear operator (again denoted by A2) from X to
Rm, then the operator (Ty)(t) := A1y(t) +A2

∫ t
0 St−sA3y(s) ds has Property 4

(for details, see (Ryan and Sangwin, 2001)).

Nonlinear delay elements. Let functions Ψn : R×Rm → Rq : (t, y) 7→ Ψn(t, y),
n = 0, ..., N , be measurable in t and globally Lipschitz in y uniformly with
respect to t: precisely, (i) for each fixed y, Ψn(·, y) is measurable and (ii) there

exists a constant c such that, for almost all t and all y, z ∈ Rm,
∥∥∥Ψn(t, y) −

Ψn(t, z)
∥∥∥ ≤ c ‖y − z‖. Assume further that Ψn(·, 0) = 0. For n = 0, ..., N , let

hn ≥ 0 and define h := maxn hn. For y ∈ C([−h,∞); Rm), the operator T , de-
fined, for all t ≥ 0, by (Ty)(t) :=

∫ 0
−h0

Ψ0(s, y(t+s)) ds+
∑N

n=1 Ψn(t, y(t−hn)) ,
has Property 4 (for details, see (Ryan and Sangwin, 2001)).

Systems with hysteresis. A general class of nonlinear operators C(R≥0; R) →
C(R≥0; R), which includes many physically motivated hysteretic effects, is
defined via assumptions (N1)–(N8) of (Logemann and Mawby, 2000, Sec. 3).
These assumptions are covered by Assumption 4 of Sub-section 2. Examples of
such operators, including relay hysteresis, backlash hysteresis, elastic-plastic
hysteresis and Preisach operators, are detailed in (Logemann and Mawby,
2000, Sec. 5).

ISS systems. Further examples of interconnected nonlinear systems with oper-
ators T of the allowable class T generated by input-to-state stable subsystem
dynamics can be found in (Ryan and Sangwin, 2001, Sec. 2.3).

3 Problem formulation

3.1 The performance funnel

Let Φ denote the class of functions ϕ ∈ W 1,∞(R≥0; R) which are positive-
valued on (0,∞) and bounded away from zero “at infinity”, that is,

Φ :=
{
ϕ ∈ W 1,∞(R≥0; R) |ϕ(s) > 0 for all s > 0 and lim inf

s→∞
ϕ(s) > 0

}
.

With ϕ ∈ Φ, we associate a set-valued map (defined on R≥0)

t 7→ F (t) :=
{
e ∈ R

M | ϕ(t)‖e‖ < 1
}
,

the graph of which we refer to as the performance funnel

F := graph(F ) :=
{
(t, e) ∈ R≥0 × R

M | e ∈ F (t)
}
.

Observe that (i) ϕ(0) = 0 is permissible, in which case, F (0) = RM , and (ii)
for every ϕ ∈ Φ and τ > 0, there exists µ > 0 such that ϕ(t) ≥ µ for all t ≥ τ ,
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and so F (t) ⊂ B1/µ(0) for all t ≥ τ .
As a concrete example, for λ > 0, τ > 0 and ε ∈ (0, 1), the choice

t 7→ ϕ(t) =
t

([1 − ε]t+ ετ)λ

yields an associated performance funnel F which reflects an overall objective
of attaining tracking accuracy λ in prescribed time τ .

3.2 Class of reference signals and control objective

As reference signals r, we allow bounded locally absolutely continuous func-
tions with bounded derivative, i.e. r ∈ W 1,∞(R≥0; R

M) with norm given by
‖r‖1,∞ := ‖r‖∞ + ‖ṙ‖∞ .

Given ϕ ∈ Φ and its associated performance funnel F , the control objective
is a single feedback strategy ensuring that, for each reference signal r ∈ W 1,∞

and every system of class Σ, the tracking error e = y − r has graph in F
(equivalently: e(t) ∈ F (t) for all t ≥ 0), and all variables are bounded.

4 Output feedback control

Let ϕ ∈ Φ determine a performance funnel F and let r ∈ W 1,∞(R≥0; R
M).

We seek to achieve the above control objective via the simple proportional
time-varying output error feedback

u(t) = −k(t)e(t), k(t) = KF(t, e(t)), e(t) = y(t) − r(t), (8)

whilst ensuring boundedness of the gain k. Here, KF : F → R≥0 is a continu-
ous function chosen to confirm the intuition underlying the control structure:
KF is such that, if (t, e(t)) approaches the boundary of the funnel F , then
the gain k(t) = KF(t, e(t)) increases at a rate sufficient to preclude – via an
implicit high-gain stability property of underlying system class Σ – bound-
ary contact, thereby maintaining the error evolution within the performance
funnel. Next, we elucidate two properties which, when imposed on the gain
function KF , confirm this intuition.

4.1 Requisite properties of the gain function

Let ϕ ∈ Φ, with associated map t 7→ F (t) and performance funnel F =
graph(F ). For each t ∈ R≥0, we denote the boundary of the set F (t) by
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∂F (t). Let KF : F → R≥0 be a continuous function. We impose only the
following additional properties on KF .

Property A: ∀K > 0 ∃ ε > 0 : ∀ (t, e) ∈ F
[

dist(e, ∂F (t)) ≤ ε =⇒ KF(t, e) ≥ K
]
.

Property B: ∀ ε > 0 ∀ δ > 0 ∃K > 0 : ∀ (t, e) ∈ F
[

dist(e, ∂F (t)) ≥ ε and t ≥ δ =⇒ KF(t, e) ≤ K
]
.

The essence of these properties is as follows. Property A ensures that, in (8),
if the tracking error e(t) is close to the funnel boundary, then the associated
gain value k(t) is large. Property B, loosely speaking, obviates the need for
large gain values away from the funnel boundary.

4.2 The main result

We now arrive at the main result, the essence of which is the assertion that
the control objective is achieved by the feedback (8) provided that KF has
Properties A and B; moreover, the function k(·) is bounded.

Theorem 2 Let (f, p, T ) ∈ Σ. Let ϕ ∈ Φ with associated map F and
performance funnel F = graph(F ). Let KF : F → R≥0 be continuous with
Properties A and B.
For any r ∈ W 1,∞(R≥0; R

M) and initial data y0 ∈ C
(
[−h, 0]; RM

)
such that

y0(0) − r(0) ∈ F (0), there exists a solution of the closed-loop initial-value
problem

ẏ(t) = f
(
p(t), (Ty)(t),−KF(t, y(t) − r(t))[y(t) − r(t)]

)
,

y(t) − r(t) ∈ F (t), y|[−h,0] = y0 .





(9)

Every solution can be extended to a maximal solution y : [−h, ω) → Rn and
every maximal solution has the following properties

(i) ω = ∞,
(ii) t 7→ k(t) = KF(t, y(t) − r(t)) is bounded on R≥0,

(iii) there exists ε > 0 such that dist
(
y(t) − r(t), ∂F (t)

)
≥ ε for all t ∈ R≥0.

Proof: Let (p, f, T ) ∈ Σ, r ∈ W 1,∞(R≥0; R
M) and y0 ∈ C([−h, 0]; RM) with

y0(0) − r(0) ∈ F (0). By a solution of the feedback-controlled initial-value
problem (9) we mean a function y ∈ C([−h, ω); RM), with 0 < ω ≤ ∞ and
y[−h,0] = y0, such that y|[0,ω) is absolutely continuous and satisfies the dif-
ferential equation in (9) for almost all t ∈ [0, ω) and y(t) − r(t) ∈ F (t) for
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all t ∈ [0, ω); y is maximal if it has no proper right extension that is also a
solution.

Step 1: We show existence of a solution of (9) and establish that every solution
can be extended to a maximal solution.
Writing e(t) := y(t) − r(t), introducing the artifact z(t) = t, extending r
to [−h,∞) by defining r(t) := r(0) for all t ∈ [−h, 0], and writing x0 :=(
0 , y0 − r|[−h,0]

)
, system (9) may be expressed in the equivalent form

ż(t) = 1,

ė(t) = f
(
p(t), (T (e+ r))(t),−KKF

(z(t), e(t)) e(t)
)
− ṙ(t),

(z(t), e(t)) ∈ F̂ :=
{
(z, e) ∈ R × RM

∣∣∣ e ∈ F (|z|)
}
,

(z, e)|[−h,0] = x0 ∈ C([−h, 0]; R × RM), x0(0) ∈ F̂ ,





(10)

which, on writing x(t) = (z(t), e(t)), (T̂ x)(t) = (T̂ (z, e))(t) := (T (e + r))(t),
and

G : R≥0 × F̂ × R
Q → R

M+1,

(t, x, w) 7→ G(t, (z, e), w) :=
(
1 , f

(
p(t), w,−KKF

(|z|, e) e
)
− ṙ(t)

)
,

can be interpreted as the initial-value problem

ẋ(t) = G(t, x(t), (T̂ x)(t)), x(t) ∈ F̂ ,
x|[−h,0] = x0 ∈ C([−h, 0]; RM+1) , x0(0) ∈ F̂ .





(11)

Now F̂ ⊂ R
M+1 is a non-empty open set, T̂ is a causal operator of class

T (for M replaced by M + 1) and G is locally essentially bounded and is
a Carathéodory function 1 , and so we may apply (Ilchmann et al., 2002b,
Theorem 5) to conclude that (11) has a solution and every solution may be
extended to a maximal solution x = (z, e) : [−h, ω) → F̂ . Furthermore, if
ω < ∞, then, for every compact C ⊂ F̂ , there exists t′ ∈ [0, ω) such that
x(t′) 6∈ C. Since (9) and (10) are equivalent representations of the same initial-
value problem, it follows that (9) has a solution and every solution can be
maximally extended. If y : [−h, ω) → R

M is a maximal solution of (9), then

1 That is: (i) G(t, ·, ·) is continuous for each fixed t ∈ R, (ii) G(·, x, w) is measurable
for each fixed (x,w) ∈ F̂ × R

Q, and (iii) for each compact C ⊂ F̂ ×R
Q there exists

κ ∈ L1
loc([−h,∞); R≥0) such that ‖G(t, x, w)‖ ≤ κ(t) for almost all t ∈ [−h,∞) and

all (x,w) ∈ C.
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graph(y − r) ⊂ F = graph(F ); moreover,

ω <∞ =⇒
∀ compact C ⊂ F ∃ t′ ∈ [0, ω) :

(
t′, y(t′) − r(t′)

)
=
(
t′, e(t′)

)
6∈ C. (12)

Let y : [−h, ω) → RM , 0 < ω ≤ ∞ be a maximal solution of (9) and write
e = y − r (with graph(e) ⊂ F).

Step 2: We highlight an essential inequality.
Let τ ∈ (0, ω). By properties of F , there exists µ > 0 such that F (t) ⊂
B1/µ(0) for all t ≥ τ . Since e(t) ∈ F (t) for all t ∈ [0, ω), it follows that e
is bounded which, in conjunction with boundedness of the reference signal r,
implies boundedness of y. Since p is essentially bounded and T ∈ T satisfies
Property 4a of the system class Σ, there exists a non-empty compact set
C ⊂ RP × RQ such that

(
p(t), (Ty)(t)

)
∈ C for almost all t ∈ [0, ω). Let γC

defined as in (7) (and so γC(s) → ∞ as s → ∞). Then, by Property 3 of the
system class Σ and essential boundedness of ṙ, there exists a constant c1 ≥ 0
(see (Ilchmann et al., 2002b, (30),(31))) such that

d

dt
‖e(t)‖2 = 2

〈
e(t), f

(
p(t), (Ty)(t),−KF(t, e(t))e(t)

)〉
− ṙ(t)

≤ −2γC
(
‖e(t)‖KF (t, e(t))

)
+ c1 for almost all t ∈ [0, ω) .

By boundedness of ϕ and e, together with essential boundedness of ϕ̇, we now
infer the existence of a constant c2 > 0 such that

d

dt

(
ϕ(t)‖e(t)‖

)2
=
(
ϕ(t)

)2 d

dt
‖e(t)‖2 + 2ϕ(t)ϕ̇(t)‖e(t)‖2

≤ −2ϕ(t)2‖e(t)‖γC
(
‖e(t)‖KF(t, e(t))

)
+ c2 a.a. t ∈ [0, ω) . (13)

Step 3: We show that the function k̃ : [0, ω) → R≥0, t 7→ (1−ϕ(t)‖e(t)‖)−1, is
bounded. Choose δ ∈ (0, ω) arbitrarily. By continuity, k̃ is bounded on [0, δ].
Seeking a contradiction, suppose k̃ is unbounded on [δ, ω). For each n ∈ N,

define σn := sup
{
t ∈ [δ, ω) | k̃(t) = k̃(δ) + n

}
and τn := inf

{
t ∈ [δ, ω) | k̃(t) =

k̃(δ) + n+ 1
}
. Then

k̃(t) ≥ n+ k̃(δ) ∀ t ∈ [σn, τn], ∀n ∈ N.

Define ϕ := inft≥δ ϕ(t). By properties of ϕ ∈ Φ, it follows that ϕ > 0 and so
we may define a decreasing sequence (εn) in R≥0, with εn ↘ 0 as n→ ∞, by

εn :=
1

ϕ [n+ k̃(δ)]
∀n ∈ N.

We now have
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dist
(
e(t), ∂F (t)

)
=

1

ϕ(t)
− ‖e(t)‖ =

1

ϕ(t) k̃(t)
≤ 1

ϕ [n + k̃(δ)]
(14)

≤ εn ∀ t ∈ [σn, τn], ∀n ∈ N . (15)

Next, we claim that the sequence (Kn) in R≥0, given by

Kn := min
t∈[σn,τn]

KF

(
t, e(t)

)
∀n ∈ N,

is unbounded. By Property A of the gain function KF , there exists a sequence
(ε̃k) in (0,∞) such that

∀(t, e) ∈ F ∀k ∈ N

[
dist(e, ∂F (t)) ≤ ε̃k =⇒ KF(t, e) ≥ k

]
. (16)

Since limn→∞ εn = 0, we may choose, for every k ∈ N, some nk ∈ N such that
εnk

≤ ε̃k. In view of (14) and (16), it follows that

KF

(
t, e(t)

)
≥ Knk

≥ k ∀ t ∈ [σnk
, τnk

], ∀ k ∈ N, (17)

and so the sequence (Kn) has an unbounded subsequence, whence the claim.

By boundedness of ϕ, convergence to zero of the decreasing sequence (εn), and
(14), we conclude the existence of constants c3 > 0 and n̂ ∈ N such that

‖e(t)‖ ≥ 1

ϕ(t)
− εn ≥ c3 ∀ t ∈ [σn, τn] ∀n ≥ ñ. (18)

Now by (13), together with (18), (17), unboundedness of (Kn) and the fact
that γC(s) → ∞ as s→ ∞ (recall (7)), we may choose some n̂ ≥ ñ such that

d

dt

(
ϕ(t)‖e(t)‖

)2
< −2ϕ2c3γC

(
‖e(t)‖KF(t, e(t)

)
+ c2 < 0 for a.a. t ∈ [σn̂, τn̂],

whence the contradiction: 1+k̃(σn̂) = k̃(τn̂) = ϕ(τn̂)‖e(τn̂)‖ < ϕ(σn̂) ‖e(σn̂)‖ =
k̃(σn̂). Therefore, k̃ is unbounded.

Step 4: We show t 7→ KF(t, e(t)) is bounded on [0, ω).
Let δ ∈ (0, ω). By continuity, KF(·, e(·)) is bounded on [0, δ]. For contradic-
tion, suppose that KF is unbounded on [δ, ω). Then there exists a sequence

(tn) in [δ, ω) such that KF

(
tn, e(tn)

)
→ ∞ as n→ ∞.

We claim that

lim inf
n→∞

εn = 0, where εn := dist
(
e(tn), ∂F (tn)

)
> 0. (19)

Suppose otherwise, then there exists ε > 0 such that εn > ε for all n ∈ N. By
Property B of the gain function, there exists K ≥ 0 such that

KF(tn, e(tn)) ≤ K for all n ∈ N ,

12



contradicting unboundedness of the sequence
(
KF (tn, e(tn))

)
. This establishes

(19). Now, observe that, for all n ∈ N,

k̃(tn) =
1

1 − ϕ(tn)‖e(tn)‖ =
1

ϕ(tn) dist(e(tn), ∂F (tn))
=

1

ϕ(tn)εn
≥ 1

‖ϕ‖∞εn
.

which, in view of (19), contradicts boundeness of k̃. Therefore, the function
KF(·, e(·)) is bounded on [0, ω).

Step 5: We show that there exists ε > 0 so that dist(e(t), ∂F (t)) ≥ ε for all
t ∈ [0, ω).
Suppose otherwise. Then there exists a sequence (tn) in [0, ω) such that

dist
(
e(tn), ∂F (tn)

)
≤ 1/n ∀n ∈ N .

By boundedness of KF(·, e(·)), K := supt∈[0,ω)KF (t, e(t)) is in R≥0. By Prop-
erty A of the gain function KF , there exists ε̂ > 0 such that, for all (t, e) ∈ F ,

dist(e, ∂F (t)) ≤ ε̂ =⇒ KF(t, e) > K .

Choosing n̂ ∈ N sufficiently large so that dist
(
e(tn̂), ∂F (tn̂)

)
≤ 1/n̂ < ε̂ yields

the contradiction

KF

(
tn̂, e(tn̂)

)
> K = sup

t∈[0,ω)
KF

(
t, e(t)

)
.

Step 6: Seeking a contradiction suppose ω < ∞. Let δ ∈ (0, ω) and ε > 0 be
as in the claim of Step 5, in which case, ε ≤ 1/ϕ(t) for all t ∈ [δ, ω]. Define

Cδ :=
{
(t, e) ∈ [δ, ω] × R

M
∣∣∣ e ∈ F (t), dist(e, ∂F (t)) ≥ ε}

=
{
(t, e) ∈ [δ, ω] × R

M
∣∣∣ ‖e‖ ≤ 1

ϕ(t)
− ε

}
.

Then Cδ is compact. Now define the compact set C̃ := {(t, e(t))| t ∈ [0, δ]}.
Then C = C̃ ∪ Cδ is a compact subset of F with (t, e(t)) ∈ C for all t ∈ [0, ω)
which contradicts property (12). Therefore, ω = ∞.

Step 7: Finally, Step 6 together with Step 4 and 5 shows Assertions 1–3.
The proof of the theorem is therefore complete. 2

5 Gain functions

In this section we describe various choices of continuous gain function KF ,
with the requisite Properties A and B, which are feasible for the feedback
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(8) and which are based on different “measures” of distance to the funnel
boundary.

5.1 Scaled vertical distance to the funnel boundary

Here, we base the gain function on measurements of the distance of the instan-
taneous error e(t) from the boundary of the set F (t): this approach uses only
funnel information at current time t and, in particular, does not anticipate
the future shape of the funnel boundary.

With reference to Figure 3, for (t, e) ∈ F , we refer to dist(e, ∂F (t)) = 1/ϕ(t)−
‖e‖ (with the convention that dist(e, ∂F (0)) = ∞ if ϕ(0) = 0) as the vertical
distance from (t, e) to the funnel boundary: in incorporating this distance in
the design of gain functions KF , we allow for scaling by a suitable function ψ
and refer to the quantity ψ(t)dist(e, ∂F (t)) as a scaled vertical distance.

Proposition 3 Let ϕ, ψ ∈ Φ such that limt→0+ ψ(t)ϕ(t)−1 =: ψ0 ∈ (0,∞],
and let F be the performance funnel associated with ϕ. Assume that β :
R>0 → R≥0 is continuous, unbounded and non-increasing. Then

KF : F → R≥0, (t, e) 7→





β
(
ψ(t) dist(e, ∂F (t))

)
, t > 0

β
(
ψ0 − ψ(0)‖e‖

)
, t = 0 and ψ0 <∞

β∗ := lims→∞ β(s), t = 0 and ψ0 = ∞

(20)

is continuous and has Properties A and B (as in Subsection 4.1). 2

Remark 4

(i) The simplest example, covered by Proposition 3, is the unscaled vertical
distance: for ψ ≡ 1 and β : s 7→ 1/s, we have, for all (t, e) ∈ F ,

KF(t, e) =
1

dist(e, ∂F (t))
=

ϕ(t)

1 − ϕ(t)‖e‖ (21)

(ii) The strategy introduced in (Ilchmann et al., 2002b) is also covered by a
function KF satisfying Properties A and B. In (Ilchmann et al., 2002b), the
control gain is defined, for any ϕ ∈ Φ and corresponding funnel F , as

k(t) = α(ϕ(t)‖e(t)‖),

where α : [0, 1) → R≥0 is some continuous, unbounded injection. Adopting
the scaling ψ = ϕ and introducing the continuous, unbounded and strictly
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decreasing function

β : R>0 → R≥0, s 7→ β(s) =




α(1 − s), s ∈ (0, 1]

α(0), s ≥ 1,

we may interpret the above strategy in terms of a gain function of form (20)
as follows

k(t) = KF(t, e(t)), KF(t, e) :=





β
(
ϕ(t)dist(e, ∂F (t))

)
, (t, e) ∈ F , t > 0

β
(
1 − ϕ(0)‖e‖

)
, (t, e) ∈ F , t = 0.

In this case, the scaling of the vertical distance by the special choice ψ = ϕ
is restrictive: Proposition 3 offers considerably more flexibility in the choice
of scaling functions.

(iii) For technical reasons it is convenient to associate with β the “generalized
inverse”

β† : (β∗,∞) → R>0, s 7→ min{σ ∈ R>0| β(σ) = s}

with the properties

β(β†(s)) = s ∀ s ∈ (β∗,∞) and lim
s→∞

β†(s) = 0.

Proof of Proposition 3: First, we prove continuity ofKF on F . Continuity
ofKF at points (t, e) ∈ F with t > 0 is an immediate consequence of continuity
of the functions ψ, ϕ and dist, together with the fact that ϕ(t) 6= 0. It remains

to prove continuity of KF at points (0, e) ∈ F . Let (0, e) ∈ F and let
(
(tn, en)

)

be a sequence in F with (tn, en) → (0, e) as n → ∞ with (tn, en) 6= (0, e) for
all n ∈ N. Define

N0 := {n ∈ N | tn = 0}, N+ := {n ∈ N | tn > 0}.

If N0 is infinite, then

lim
n→∞, n∈N0

KF(tn, en) =





limn→∞ β
(
ψ0 − ψ(0)‖en‖

)
, ψ0 <∞

β∗, ψ0 = ∞





= KF(0, e) .

If N+ is infinite, then

lim
n→∞, n∈N+

KF(tn, en) = lim
n→∞, n∈N+

β

(
ψ(tn)

ϕ(tn)
− ψ(tn)‖en‖

)
= KF(0, e)

It now follows that
lim

n→∞
KF(tn, en) = KF (0, e),
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and so KF is continuous at all points (0, e) ∈ F .

Next, we establish Property A. Let K > 0 arbitrary and define, for β† as in
Remark 4(iii),

ε := β†(K + β∗)/‖ψ‖∞ > 0 .

Observe that, if dist(e, ∂F (0)) ≤ ε, then ϕ(0) > 0 and ψ(0)dist(e, ∂F (0)) =
ψ0 − ψ(0)‖e‖. We may now conclude that, for each (t, e) ∈ F ,

dist(e,∂F (t)) ≤ ε =⇒ ψ(t)dist(e, ∂F (t)) ≤ ε‖ψ‖∞ = β†(K + β∗)

=⇒ KF(t, e) = β
(
ψ(t)dist(e, ∂F (t))

)
≥ β

(
β†(K + β∗)

)
≥ K , (22)

and so Property A holds.

Finally, we establish Property B. Let ε > 0 and δ > 0 be arbitrary and define

K := β
(

min{b, εψ}
)

with ψ := inf
t≥δ

ψ(t).

Let (t, e) ∈ F . Then,

dist(e, ∂F (t)) ≥ ε & t ≥ δ =⇒ ψ(t)dist(e, ∂F (t)) ≥ εψ ≥ min{b, εψ}
=⇒ KF(t, e) = β

(
ψ(t)dist(e, F (t))

)
≤ K.

This completes the proof. 2

5.2 Distance to the future funnel boundary

As already mentioned, the scaled vertical distance, investigated in the previ-
ous subsection, uses only instantaneous funnel information. It is of theoretical
interest, and also of relevance in certain applications, to incorporate anticipa-
tion of the future funnel shape in determining the current gain value. To this
end, we next investigate the adoption of the distance df(t, e) of (t, e) ∈ F to
the future funnel boundary in the design of gain functions KF with Proper-
ties A and B. For ϕ ∈ Φ, with associated map F and performance funnel F ,
this distance is defined, with reference to Figure 3, as follows

df : F → R>0, (t, e) 7→ inf
τ>t

√
(τ − t)2 +

(
dist(e, ∂F (τ)

)2
.

In contrast with the (scaled) vertical distance of the previous subsection (which
is infinite at (0, e) in cases where ϕ(0) = 0), the distance df(t, e) is finite for
all (t, e) ∈ F .

Proposition 5 Let ϕ ∈ Φ, with associated map F and performance funnel
F , and let ψ ∈ Φ be such that ψ(0) > 0. Assume that β : R>0 → R≥0 is
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continuous, unbounded and non-increasing. Then the mappings df : F → R>0

and
KF : F → R≥0, (t, e) 7→ β

(
ψ(t)df(t, e)

)

are continuous and KF has Properties A and B.

Proof: We first show continuity of df .
Define

M(s) := {(r, 1/ϕ(r))| r > s} for s ≥ 0 ,

and note that df(t, e) = dist((t, ‖e‖),M(t)) for all (t, e) ∈ F . We will prove
continuity of df by showing that the map (t, e) 7→ dist((t, ‖e‖),M(t)) is con-
tinuous on F . Let (t, e) ∈ F be arbitrary. For notational convenience, we
introduce η := (t, ‖e‖) and

θ : R≥0 → [0,∞), τ 7→ θ(τ) :=

√(
ϕ(τ)(t− τ)

)2
+
(
1 − ϕ(τ)‖e‖

)2
.

The following is readily seen:

∀ s ≥ 0 ∃ τ ≥ s : ϕ(τ) > 0 and dist(η,M(s)) =
θ(τ)

ϕ(τ)
.

Now consider the case wherein ϕ(0) > 0. Let s ≥ 0 and ε > 0 be arbitrary.
By continuity of ϕ, there exists δ ∈ (0, ε/2) such that

σ1, σ2 ∈ (s− δ, s + δ) ∩ [0,∞) =⇒ |1/ϕ(σ1) − 1/ϕ(σ2)| < ε/2.

Let σ ≥ 0 be such that |σ − s| < δ. Let ρ0 := min{σ, s} and ρ1 := max{σ, s}.
Let τ ≥ ρ0 be such that dist(η,M(ρ0)) = θ(τ)/ϕ(τ). Since M(ρ1) ⊂M(ρ0), it
follows that dist(η,M(ρ0)) ≤ dist(η,M(ρ1)), with equality holding if τ ≥ ρ1

(in which case, we have |dist(η,M(σ)) − dist(η,M(s))| = |dist(η,M(ρ1) −
dist(η,M(ρ0))| = 0). Moreover, if τ < ρ1, then |ρ1 − τ | < |σ − s| < δ and

|dist(η,M(σ)) − dist(η,M(s))| = |dist(η,M(ρ1) − dist(η,M(ρ0))|
= dist(η,M(ρ1)) − θ(τ)/ϕ(τ) ≤ θ(ρ1)/ϕ(ρ1) − θ(τ)/ϕ(τ)

≤
√

(ρ1 − τ)2 + (1/ϕ(ρ1) − 1/ϕ(τ))2 ≤
√
δ2 + (ε/2)2 < ε .

This completes the proof of continuity (on R≥0) of the map s 7→ dist(η,M(s))
in the case of ϕ(0) > 0. Next, we consider the case wherein ϕ(0) = 0. In this
case, the above argument applies mutatis mutandis to conclude continuity of
the map dist(η,M(·)) on the open interval (0,∞). It remains only to prove
continuity at s = 0. Let s = 0. Then there exists τ > 0 such that

dist(η,M(σ)) = dist(η,M(0)) = θ(τ)/ϕ(τ) ∀ σ ∈ [0, τ ]

whence continuity at s = 0.

We proceed to prove continuity of df at (t, e) ∈ F . Let ε > 0 be arbitrary. By
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continuity of the map s 7→ dist(η,M(s)), there exists δ1 > 0 such that, for all
s ≥ 0,

|s− t| < δ1 =⇒ |dist(η,M(t)) − dist(η,M(s))| < ε/2

Since, for each s ≥ 0, the map η 7→ dist(η,M(s)) is globally Lipschitz, with
Lipschitz constant 1, it follows that

|dist(µ,M(s)) − dist(η,M(s))| ≤ ‖µ− η‖ ∀ µ ∈ R
2 ∀ s ≥ 0.

Now define δ := min{δ1, ε/2}. Then, for all (s, v) ∈ F with ‖(s, v)−(t, e)‖ < δ,
we have

|dist((s, ‖v‖),M(s))−dist((t, ‖e‖),M(t))|
≤ |dist((t, ‖e‖),M(s)) − dist((t, ‖e‖),M(t))|

+ |dist((s, ‖v‖),M(s)) − dist((t, ‖e‖),M(s))|
≤ ε/2 + δ ≤ ε .

This shows continuity of df .

Now continuity of KF is a consequence of continuity of β and df .

Next, we prove Property A. Let β† be as in Remark 4(iii). Let K > 0 be
arbitrary and define ε := β†(K + β∗)/‖ψ‖∞. Let (t, e) ∈ F . Then, we have

dist(e, ∂F (t)) < ε =⇒ df(t, e) < ε =⇒ ψ(t)df(t, e) < β†(K + β∗)

=⇒ KF(t, e) = β
(
ψ(t)df (t, e)

)
≥ β

(
β†(K + β∗)

)
≥ K ,

and so Property A holds.

It remains to prove Property B. Seeking a contradiction, suppose Property B
fails to hold. Then there exist ε > 0, δ > 0 and a sequence (tn, en) in F such
that dist(en, ∂F (tn)) ≥ ε, tn ≥ δ and KF(tn, en) > n + β∗ for all n ∈ N.
For each n ∈ N, define

εn := β†(n+ β∗)/ψ with ψ := inf
t≥δ

ψ(t) > 0 .

It now follows that

KF(tn, en) = β(ψ(tn)df(tn, en)) > n+β∗ =⇒ ψ(tn)df(tn, en) ≤ β†(n+β∗)

=⇒ df(tn, en) ≤ β†(n + β∗)/ψ = εn ∀ n ∈ N .

Therefore, for each n ∈ N, there exists (τn, zn) ∈ R>0 × ∂F (τn), with τn ≥
tn and ‖zn‖ = 1/ϕ(τn), such that ‖(tn, en) − (τn, zn)‖ < 2εn. Now, since
ϕ ∈ W 1,∞, the reciprocal function 1/ϕ(·) satisfies a global Lipschitz condition
(with Lipschitz constant L) on [δ,∞). We now arrive at a contradiction

0 < ε ≤ dist(en, ∂F (tn)) =
1

ϕ(tn)
− ‖en‖ ≤

∣∣∣∣∣
1

ϕ(tn)
− 1

ϕ(τn)

∣∣∣∣∣+
∣∣∣‖zn‖ − ‖en‖

∣∣∣

≤ L|tn − τn| + ‖zn − en‖ ≤ 2[L+ 1]εn → 0 as n→ ∞ .
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Therefore, Property B holds. This completes the proof of the proposition. 2

5.3 A numerical future distance to the funnel boundary

In applications, the distance function df of the previous sub-section may prove
difficult to realize. The following distance function is simpler to compute and,
loosely speaking, may be regarded as a numerical approximation to df . For

1/ϕ(·)
‖e(·)‖

�������

h0 · · h3

�

�

�

�

	
	







dnf

(
t, e(t)

)

Fig. 4. The numerical distance dnf to the future funnel boundary.

N ∈ N, choose a partition of [0, 1]

0 = h0 < h1 < . . . < hN ≤ 1.

Let ϕ ∈ Φ such that ϕ(0) > 0, and let F be the associated performance funnel.
For notational simplicity, we write

d(t, e) := dist(e, ∂F (t)) <∞ for all (t, e) ∈ F .

The numerical future distance to the funnel boundary is the function dnf :
F → R>0 given by

dnf(t, e) := min
i∈{0,...,N}

dist
(
(t, ‖e‖), (t+ hid(t, e), 1/ϕ(t+ hid(t, e))

)

= min
i∈{0,...,N}

√√√√
(
hid(t, e)

)2

+

(
1

ϕ(t + hid(t, e))
− ‖e‖

)2

. (23)

The numerical future distance calculates, at any time t, the distance to the
funnel boundary at finitely many future points t + hid(t, e). Observe that,

since dist
(
(t, ‖e‖), (t + δ, 1/ϕ(t + δ)

)
≥ δ for all δ > 0, it is not necessary to

look further into the future than the value of the actual “vertical” distance
dist(e, ∂F (t)) = d(t, e): this observation justifies the adoption of of the interval
[0, 1] for partition.
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Proposition 6 Let ϕ, ψ ∈ Φ with ϕ(0) > 0 and ψ(0) > 0. Let F be the
performance funnel associated with ϕ and assume that β : (0,∞) → R≥0 is a
continuous, non-increasing and unbounded function. Then

KF : F → R≥0, (t, e) 7→ β
(
ψ(t)dnf(t, e)

)

is continuous and satisfies the Properties A and B in Sub-section 4.1.

Proof: Since (t, e) 7→ d(t, e) = dist(e, ∂F (t)) is continuous on F , the func-
tions

(t, e) 7→
(
hid(t, e)

)2

+

(
1

ϕ(t+ hid(t, e))
− ‖e‖

)2

, i = 0, 1, . . . , N

are continuous on F . Therefore dnf is continuous as a minimum of finitely
many continuous functions and continuity of KF follows from continuity of
dnf , ψ, and β.

Next, we establish Property A. For β† as in Remark 4(iii) and K > 0, we have

(t, e) ∈ F , KF(t, e) < K =⇒

ε :=
β†(K)

‖ψ‖∞
< dnf(t, e) ≤ dist

(
(t, ‖e‖), (t, 1/ϕ(t))

)
= dist(e, ∂F (t)),

whence Property A. Finally, we establish Property B. Seeking a contradiction,
suppose there exist ε > 0, δ > 0 and a sequence (tn, en) ∈ FN such that

dist(en, ∂F (tn)) ≥ ε, tn ≥ δ, KF (tn, en) > n ∀n ∈ N .

By definition of KF ,

KF(tn, en) > n =⇒ dnf(tn, en) < εn :=
β†(n)

inft≥δ ψ(t)
, ∀n ∈ N .

For every n ∈ N, choose in ∈ {0, 1, . . . , N} such that

(
dnf(tn, en)

)2
=
(
hind(tn, en)

)2

+

(
1

ϕ(t+ hind(tn, en))
− ‖en‖

)2

.

Note that

ε ≤ dist(en, ∂F (tn)) = d(tn, en)

=

√√√√
(
h0d(tn, en)

)2

+

(
1

ϕ(t+ h0d(tn, en))
− ‖en‖

)2

.
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Since limn→∞ εn = 0 and dnf(tn, en) < εn, there exists n̂ ∈ N such that in ≥ 1
for all n ≥ n̂ and so

εn > dnf(tn, en) =

√√√√
(
hind(tn, en)

)2

+

(
1

ϕ(t + hind(tn, en))
− ‖en‖

)2

≥ hind(tn, en) ≥ h1ε ∀n ≥ n̂ .

This is a contradiction, and therefore the proof of the proposition is complete.
2
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et Modèles Mathématiques pour l’Automatique, l’Analyse de Systèmes et le
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