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Abstract— Averaging is an effective technique which allows
the analysis and control design of nonsmooth switched systems
through the use of corresponding simpler smooth averaged
systems. Approximation results and stability analysis have been
presented in the literature for dynamic systems described by
switched ordinary differential equations. In this paper the
averaging technique is shown to be useful also for the analysis
of switched systems whose modes are represented by means
of differential algebraic equations (DAEs). An approximation
result is derived for a simple but representative homogenous
switched DAE with periodic switching signals and two modes.
Simulations based on a simple electrical circuit model illustrate
the theoretical result.

I. INTRODUCTION

Averaging theory is a powerful tool to analyze nonlinear
systems and it has been proved that trajectories of the
averaged system are close to those of the unaveraged system
and an relationship between the stability properties of the two
systems has been established [1]. In the last few years av-
eraging theory for switched systems has attracted a growing
interest in the control literature where different approaches
and points of view related to the switched system characteris-
tics are considered: non-periodic switching functions [2] [3],
pulse modulations [4], dithering [5], [6], effects of exogenous
inputs [7], hybrid systems framework [8]. The paper [9]
presents an overview on the averaging results for switched
systems which switches among modes each represented by
means of possibly nonlinear ordinary differential equations.
Averaging of fast switching systems is also an effective
technique used in many engineering applications [10].

The representation of switched systems by means of
switching ordinary differential equations (ODEs) might limit
the class of systems which can be considered. For instance,
a switched system characterized by modes with different
algebraic constraints, which may imply state jumps at the
switching time instants, cannot be represented by means of
switched ODEs. In this case one can use a representation
through switched differential algebraic equations (DAEs). A
switched (linear) DAE is a system consisting of a family
of linear DAEs and a policy that at each time instant
selects the active subsystem among a set of possible modes.
The selection policy is usually described by means of a
switching function, which is a function of time. In this
paper we consider homogeneous linear switched DAEs of
the form [11]

Eσẋ = Aσx (1)
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where the switching function σ(t) : [0,∞) → Σ is a
piecewise constant function right-continuous, that selects at
each time instant t the index of the active mode from the
finite index set Σ = {1, 2, . . . ,M}. We restrict our attention
here mainly on the case M = 2 (c.f. Remark 4) and
on periodic switching signals. Each mode is given by the
matrices Ei, Ai ∈ Rn×n and it is assumed that the matrix
pair (Ei, Ai) is regular, i.e. the polynomial det(sEi−Ai) is
not the zero polynomial, for each i ∈ Σ.

Switched DAEs occur, for example, in modeling electrical
circuits with switches or when modeling possible faults in
systems where each (faulty and non-faulty) configuration is
described by a DAE [12], [13]. In spite of the presence of
possible state jumps, the state evolution in switched DAEs
might exhibit an average (smooth) emergent behavior. In that
sense our scope is to give some theoretical justifications for
averaging applications for this class of nonsmooth systems
by presenting a new averaging theorem based on direct
comparison of the solutions of the original and the proposed
averaged systems. Although we concentrate on a specific
class of switched (linear) DAEs, at the best of our knowledge
this is the first time in the literature that the averaging
technique is applied to switched DAEs.

The paper is organized as follows. Section II recalls
some preliminary results. In particular the classical averaging
approach for ODE is presented as well as a short review of
the solution theory for switched DAEs is given. Section III
discusses the averaging approach for switched DAEs and
we first show via a simple example that in general a
averaged model does not exist. However, if we make the
assumption that the consistency projectors commute then we
can show that an averaged model exists and the solutions
of the switched DAE converge to the averaged solution for
increasing switching frequency. In Section IV an example
based on a simple electrical circuit model is presented which
illustrates our theoretical results. Section V concludes the
paper by proposing some future research directions and the
major open issues.

II. PRELIMINARIES

For readability of the paper we first introduce some basic
definitions and a lemma.

Definition 1 (Big O notation): Consider two functions
f, g : (0,∞) → V , where V is some normed vector space
with norm ‖ · ‖. We write

f(x) = O(g(x)) for x→ 0 (2)

if and only if there exist constants K and x̄ > 0 such that

‖f(x)‖ 6 K‖g(x)‖ for all 0 < x 6 x̄. (3)



Lemma 1: Consider two commuting matrices M1 and
M2, with M1 such that M2

1 = M1. Then the following holds

imM1M2 = imM1 ∩ imM2. (4)
Proof:

“⊆” Clearly, it holds that

imM1M2 ⊆ imM1,

and by using that M1 and M2 are commuting
matrices we also have

imM1M2 = imM2M1 ⊆ imM2.

This shows imM1M2 ⊆ imM1 ∩ imM2.
“⊇” Considering y ∈ imM1 ∩ imM2 the following

holds:
y ∈ imM1 ∩ imM2

⇔ ∃ x1 ∈ Rn,∃ x2 ∈ Rn :

M1x1 = M2x2 = y

⇒ y
•
= M2

1x1
?
= M1M2x2

⇒ ∃ x ∈ Rn : y = M1M2x

⇔ y ∈ imM1M2,

where for • we used M2
1 = M1 and for ? we used

M1x1 = M2x2. This concludes the proof.

A. The Averaging approach for switched ODEs

Consider the homogeneous switched linear system

ẋ = Aσx, (5)

and assume that the switching function σ is periodic of period
p. If the period is sufficiently small the averaged model
can be introduced. The averaged system approximates the
behavior of the system (5) and can be represented as

ẋav = Aavxav, (6)

where Aav is a constant matrix defined as

Aav =
1

p

∫ p

0

Aσ(s)ds =

M∑
i=1

τi
p
Ai, (7)

where τi is the total time duration of the mode σ(t) = i for
t ∈ [0, p] and di = τi/p is the duty cycle of the ith mode.
By using the arguments shown in [14] and [5] it is possible
to show the following approximation result.

Theorem 1: Consider the switched systems (5) and the
corresponding averaged system (6), (7), with initial condi-
tions x(0) = x0 and xav(0) = x0. Assume that the switched
signal σ is periodic of period p, then for any given t̄ and for
any initial condition x0 ∈ Rn the following holds

‖x(t)− xav(t)‖ = O(p), ∀t ∈ [0, t̄]. (8)
The purpose of this paper is the generalization of this

result to switched DAEs with two modes.

B. The quasi-Weierstrass form and consistency projectors

Consider a non-switched DAE

Eẋ = Ax (9)

with E and A ∈ Rn×n and differentiable solutions x : R→
Rn . When the matrix E is invertible, (9) reduces to a more
familiar ordinary differential equation, so in the following
the matrix E is in general singular. However, we assume
that the matrix pair (E,A) is a regular, i.e. det(sE − A) is
not the zero polynomial. It is well known that this is the case
if, and only if, there exist invertible transformation matrices
S, T ∈ Rn×n that put the matrices in the quasi Weierstrass
form [15]

(SET, SAT ) =
([

I 0
0 N

]
,

[
J 0
0 I

])
(10)

where N ∈ Rn2×n2 ,with 0 6 n2 6 n, is a nilpotent matrix
and J ∈ Rn1×n1 , with n1 = n − n2, is some matrix and
I is the identity matrix of appropriate size. Following [16]
we call (10) quasi Weierstrass form as we do not assume
that J and N are in Jordan canonical form. In [16] it was
shown that the transformation matrix can be represented as
T = [V ;W ] and S = [EV ;AW ]−1 with imV = V∗ and
imW = W∗ where V∗ and W∗ are obtained through the
Wong sequences [17], given by

V0 := Rn,Vi+1 := A−1(EVi), i ∈ N, V∗ :=
⋂
i∈N
Vi

W0 := {0},Wi+1 := A−1(EWi), i ∈ N, W∗ :=
⋃
i∈N
Wi

It is easy to see that a DAE in Weierstrass form consists of
two independent parts: an “ODE part” given by

ẏ = Jy (11)

and a “pure DAE part” given by

Nż = z, (12)

where the pure DAE part only has the solution z = 0. Hence
the classical solutions of a regular DAE (E,A) are given by
the ODE (11) and the coordinate transformation

x = T

(
y
0

)
. (13)

This leads to the definition of the so called consistency
projectors. The consistency projector Π of the matrices pair
(E,A) is defined as

Π = T

[
I 0
0 0

]
T−1, (14)

where the block sizes correspond to the block size in
the quasi Weierstrass form (10). The consistency projector
characterizes the space within all solutions of (9) evolve, i.e.
the consistency space is im Π; furthermore it plays a role
when considering inconsistent initial values as they occur



when switching between different DAEs. To describe the
DAE solution it is possible to introduce the flow matrix

Adiff = T

[
J 0
0 0

]
T−1. (15)

Note that, due to the special structure of the consistency
projector Π and Adiff,

AdiffΠ = Adiff = ΠAdiff. (16)

By using the flow matrix it is possible [18] to introduce an
ODE system

ẋ = Adiffx, (17)

and show that each solution of (9) also solves (17).

C. Solutions of switched DAEs

Consider the switched DAE (1). To ensure the uniqueness
of solutions we assume that each matrix pair (Ei, Ai) is
regular, and (e.g. by calculating the corresponding Wong
sequences) we assume knowledge of the quasi-Weierstrass
form (10) with corresponding transformation matrices Ti, Si,
consistency projectors Πi and flow matrices Adiff

i . Moreover
we assume impulse-free solutions for any switching signal,
which can be characterized [12] by the condition

Ej(I −Πj)Πi = 0, ∀i, j ∈ {1, 2, . . . ,M}. (18)

Any solution of each individual DAE Eiẋ = Aix, evolves
within the consistency space and at a switching time tk, a
continuous extension to the future does not exist in general,
because the value x(tk−) := limε↘0 x(t − ε) need not be
within the consistency space corresponding to the DAE after
the switch. Therefore it is necessary to allow for solutions
with jumps. Indeed, it can be shown [12] that the jump from
an inconsistent to a consistent initial value is uniquely given
by the consistency projector Πik corresponding to the system
(Eik , Aik) activated at the switching time tk:

x(tk) = Πikx(tk−1−). (19)

Hence, invoking (17), the solution x on the interval [tk, tk+1)
is given by

x(t) = eA
diff
ik

(t−tk)x(tk)

= eA
diff
ik

(t−tk)Πikx(tk−), t ∈ [tk, tk+1).
(20)

Let t0 < t1 < t2 < . . . be the switching times of σ and
ik ∈ {1, 2, . . . ,M} the value of σ on [tk, tk+1). Then for
t ∈ [tk, tk+1) the solution of the switched DAE (1) can be
represented therefore as

x(t) = eA
diff
ik

(t−tk)Πik e
Adiff

ik−1
(tk−tk−1)

Πik−1
. . .

eA
diff
i1

(t2−t1)Πi1 e
Adiff

i0
(t1−t0)Πi0x(t0−). (21)

Remark 1 (Impulsive solution): If the impulse-freeness
condition (18) is not fulfilled then the switched DAE (1)
with regular matrix pairs (Ei, Ai) has unique solutions
within a suitable distributional solution framework [12]. Each
distributional solution x can then be written as x = xf + xi
where xf corresponds to a piecewise-smooth function and

xi contains the impulsive terms (which only occur at the
switching times). The solution formula (21) still holds for xf ,
so the forthcoming results can also be applied to switched
DAEs which do not satisfy the impulse-freeness condition
(18) provided one is only interested in the non-impulsive part
xf of the solution. In fact, the impulses in x are proportional
to the jumps and since the averaging model results in smooth
solutions it is to be expected that the impulsive part converges
to zero as the non-impulsive part converges to the averaged
solution; however, we haven’t studied this aspect in detail
yet.

III. AVERAGING FOR SWITCHED DAES

Consider the switched DAE initial value problem defined
on the time interval [0,∞):

Eσẋ = Aσx

x(0−) = x0. (22)

Assume that σ : [0,∞) → {1, 2} is periodic with period p
and given by

σ(t) =

{
1, t ∈ [kp, (k + d)p), k ∈ N
2, t ∈ [(k + d)p, (k + 1)p), k ∈ N

(23)

where d ∈ (0, 1) is the duty cycle of mode one.
To define an averaged model for this class of systems a

naive generalization from the ODE case to the DAE case is
not working, as shown in the following simple example.

Example 1: Let

(E1, A1) =
([

0 1
0 0

]
,

[
0 −1
1 −1

])
,

(E2, A2) =
([ 0 0

0 1

]
,

[
1 0
0 −3

])
,

and σ be periodic with period p > 0 and d = 0.75. The
matrix pairs (T1, S1) and (T2, S2) corresponding to the quasi
Weierstrass form (10) are

(T1, S1) =
([

1 1
1 0

]
,

[
1 0
0 1

])
,

(T2, S2) =
([ 0 1

1 0

]
,

[
0 1
1 0

])
,

the consistency projectors are

Π1 =

[
0 1
0 1

]
, Π2 =

[
0 0
0 1

]
,

and the corresponding flow matrices are

Adiff
1 =

[
0 −1
0 −1

]
, Adiff

2 =

[
0 0
0 −3

]
.

Solutions for the corresponding switched DAE are shown in
Figure 1. It can be seen, that the solutions jump back and
forth between the two consistency spaces; clearly, increasing
the switching frequency does not lead to a single smooth
trajectory. Hence, convergence to an average model is not
possible.
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Fig. 1. State–space solution of Example (1): (a) p = 0.5 s, (b) p = 0.05 s.

The previous example showed a major difference to the
switched ODE case where under no further assumptions con-
vergence to an average model appears. For switched DAEs it
is intuitively clear, that in case of convergence to trajectories
of an averaged model, these trajectories must evolve within
the intersection of the consistency spaces otherwise the
jumps will not converge to zero as the frequency increases.
Furthermore, at least one consistency projector must jump
into the intersection, otherwise the limit cannot be within
the intersection. It turns out that the crucial assumption is
commutativity of the consistency projectors:

Π1Π2 = Π2Π1. (24)

By Lemma (1) this condition already implies that the image
of Π1 (applied to the consistency space im Π2) is contained
within the intersection of the consistency spaces, in fact

Π∩ := Π1Π2 fulfills im Π∩ = im Π1 ∩ im Π2. (25)

We are now ready to state our main result:
Theorem 2: Consider the switched DAE system (22) with

two modes satisfying the following assumptions
(i) the switching signal σ is periodic of period p and given

by (23) with d ∈ (0, 1);
(ii) the matrix pairs (Ei, Ai), i = 1, 2, are regular with

corresponding consistency projectors Πi and flow ma-
trices Adiff

i ;
(iii) the consistency projectors commute, i.e. (24) holds; in

particular Π∩ fulfills (25);
then for any given t̄ > 0 and x0 ∈ Rn the following holds

‖x(t)− xav(t)‖ = O(p) , ∀t ∈ (0, t̄ ], (26)

where xav is the solution of

ẋav = Π∩ A
diff
av Π∩ xav, xav(0) = Π∩ x0, (27)

and Adiff
av := Adiff

1 d+Adiff
2 (1− d).

Proof: Considering the arbitrary but fixed time instant
t∗ ∈ (0, t̄ ]. Choose k ∈ N such that t∗ = kp + τ for
τ ∈ [0, p). Note that t∗ > 0 implies that k > 0 for sufficiently
small p. The solution of the switched DAE can then be
written as

x(t∗) = M̃(τ)Π1

(
eA

diff
2 (1−d)pΠ2e

Adiff
1 dpΠ1

)k
x0, (28)

where

M̃(τ) =

{
eA

diff
1 τ if 0 6 τ < dp

eA
diff
2 (τ−dp)Π2e

Adiff
1 dp if dp 6 τ < p.

Invoking (16) as well as Π2
∩ = Π∩, we can rewrite (28) as

x(t∗) =M̃(τ)Π1(Π2e
Adiff

2 (1−d)peA
diff
1 dpΠ1)kx0

=M(τ)(Π∩e
Adiff

2 (1−d)peA
diff
1 dpΠ∩)k−1N(p)x0, (29)

with
M(τ) := M̃(τ)Π∩ = Π∩ +O(p) (30)

and

N(p) := Π∩e
Adiff

2 (1−d)peA
diff
1 dpΠ1 = Π∩ +O(p), (31)

where we used the constant approximation of the exponen-
tial(s) at zero and the fact that Π∩Π1 = Π∩ = Π2Π∩.
By considering the linear approximations of the exponentials
in (29) we obtain

x(t∗)=M(τ)[Π∩(I +Adiff
2 (1− d)p+O(p2))

(I +Adiff
1 dp+O(p2))Π∩]k−1N(p)x0

=M(τ)(Π∩+Π∩A
diff
av Π∩p+O(p2))k−1N(p)x0. (32)

Note that by construction O(p2) = Π∩O(p2)Π∩. We will
now show that

(Π∩ + Π∩A
diff
av Π∩p+O(p2))k−1

= (Π∩ + Π∩A
diff
av Π∩p)

k−1 +O(p). (33)

In fact, (33) is similar to the statement in numerics, that the
Euler method has global convergence of order one, hence
we only sketch the proof idea1 here. First consider the
map f : M 7→ Mk−1 for some square matrices M . The
derivative of f satisfies ‖f ′(M)‖ 6 (k − 1)‖M‖k−2 for
some compatible norms. Now the mean value theorem (see
e.g. [19, Thm. VII.3.9]) yields:

‖(M + ∆)k−1 −Mk−1‖ 6 sup
‖∆‖6‖∆‖

‖f ′(M+∆)‖‖∆‖

6 (k − 1)(‖M‖+ ‖∆‖)k−2‖∆‖. (34)

Now, invoking O(p2) = Π∩O(p2)Π∩, Πk
∩ = Π∩ and (34)

for M = I +Adiff
av ,

‖(Π∩+Π∩A
diff
av Π∩p+O(p2))k−1−(Π∩+Π∩A

diff
av Π∩p)

k−1‖
6 ‖Π∩‖2‖(I +Adiff

av p+O(p2))k−1 − (I +Adiff
av p)

k−1‖
6 (k − 1)(1 + ‖Adiff

av ‖p+ C1p
2)k−2C2p

2,

where C1 > 0 is some suitable constant independent of p
and k and C2 = ‖Π∩‖2C1. We can assume that p 6 1,
hence for C3 := ‖Adiff

av ‖+ C1 we obtain

(1 + ‖Adiff
av ‖p+ C1p

2)k−2 6 (1 + C3p)
k−2

6

(
1 +

C3t
∗

k − 2

)k−2

6 eC3t
∗
,

1We thank Tobias Damm for pointing us in the right direction.



where the bound eC3t
∗

is independent of p and k. Finally
invoking (k − 1)eC3t

∗
C2p

2 = O(p) implies (33).
Altogether, by using (30), (31) and (33), equation (32)

becomes

x(t∗) =(Π∩ +O(p))[(Π∩ + Π∩A
diff
av Π∩p)

k−1x0

+O(p)](Π∩ +O(p))

= Π∩(Π∩ + Π∩A
diff
av Π∩p)

k−1Π∩x0 +O(p)
�
= (Π∩ + Π∩A

diff
av Π∩p)

k−1x0 +O(p), (35)

where for � we use that Πk−1
∩ = Π∩.

Consider now the solution of the averaged model (27)

xav(t∗) = eΠ∩A
diff
av Π∩tΠ∩x0. (36)

Note that, for all s ∈ R,

eΠ∩A
diff
av Π∩s = Π∩e

Π∩A
diff
av Π∩sΠ∩,

hence (36) can be written as

xav(t∗) =Mav(τ)
(

Π∩e
Π∩A

diff
av Π∩pΠ∩

)k
x0

=Mav(τ)
(

Π∩e
Π∩A

diff
av Π∩pΠ∩

)k−1

Nav(p)x0 (37)

with
Mav(τ) = eΠ∩A

diff
av Π∩τΠ∩ = Π∩ +O(p), (38)

and
Nav(p) = Π∩e

Π∩A
diff
av Π∩τΠ∩ = Π∩ +O(p). (39)

Using again the linear approximation of (37) we obtain

xav(t∗)=Mav(τ)
(
Π∩+Π∩A

diff
av Π∩p+O(p2)

)k−1
Nav(p)x0.

Due to (33), and by using the constant approximation of the
exponentials (38) and (39), we can write

xav(t∗) = (Π∩ + Π∩A
diff
av Π∩p)

k−1x0 +O(p). (40)

Comparing now (35) with (40) we obtain

‖x(t∗)− xav(t∗)‖ = O(p).

Remark 2: Note that if the duty ratio d is equal to zero
(or to one), i.e. the switched DAE reduces to one subsystem,
then the convergence to the averaged model is not guaranteed
because the trajectory jumps only one time at the beginning
and the jump might not be into the intersection of the
consistency spaces.

Remark 3: A careful analysis of the proof shows that the
constant in the O(p) term in (26) depends exponentially on
the end time t∗ and linearly on the other parameters (e.g.
initial value x0, magnitudes of the matrices Adiff

i and Πi).
Note furthermore that (26) only holds for sufficiently small
p where “sufficiently” actually depends on t: For t > 0 the
switching period must fulfill p < t, because otherwise the
inconsistent initial value doesn’t jump at least once to the
intersection of the consistency spaces and the error could be
arbitrary large (c.f. Figures 3 and 4).

Remark 4 (Commutativity and M > 2): A straight for-
ward generalization of the proof idea to the case M > 2

does not work because in order to obtain the expression (29)
the fact that M = 2 is crucial, because in this case the
projectors Π1 and Π2 can be moved to the “outside” and
are then combined to the single projector Π∩ = Π1Π2. For
M > 2 there will be at least one projector which cannot be
moved to the outside because then it has to commute with
one of the other Adiff-matrices. The latter is fulfilled when
it is assumed that all Adiff matrices commute [20] which in
turn also implies commutativity of the consistency projectors.
In that case a generalization of our result is possible, but it
seems that these assumptions are too strong in general.

IV. CIRCUIT EXAMPLE

Consider the simple switched circuit as shown in Figure 2.

C1 vC1 C2 vC2

iR

R

Fig. 2. A simple circuit composed of two parallel capacitors, a switch and
a resistor. Note that closing the switch will result in jumps in the voltages;
in particular, it is not possible to model this circuit with usual switched
ODEs.

The governing equations for the open switch are as fol-
lows:

C1v̇C1 = 0, C2v̇C2 = −iR,

for the closed switch:

C1v̇C1
+ C2v̇C2

= −iR, 0 = vC1
− vC2

,

and 0 = vC2−RiR in both cases. With x = (vC1 , vC2 , iR)>,
this results in a switched DAE given by

(E1, A1) =
([

0 0 0
C1 0 0
0 C2 0

]
,
[

0 -1 -R
0 0 0
0 0 -1

])
(E2, A2) =

([
0 0 0
C1 C2 0
0 0 0

]
,
[

0 1 -R
0 0 1
1 -1 0

])
The corresponding consistency projectors are given by:

Π1 =

[
1 0 0
0 1 0

0
1
R 0

]
, Π2 = 1

C1+C2

[
C1 C2 0
C1 C2 0
C1

R
C2

R 0

]
.

It is easy to check that both projectors commute:

Π∩ := Π1Π2 = Π2 = Π2Π1,

hence we can define the averaged system as follows:

ẋ = Π∩A
diff
av Π∩x = −1

R(C1+C2)2

[
C1 C2 0
C1 C2 0
C1

R
C2

R 0

]
. (41)

Note that for this example the averaged systems does not
depend on the duty cycle d ∈ (0, 1) (but Adiff

av does). The
solution of the corresponding switched DAEs and that of the
averaged system (41) are shown in Fig 3, with a switching
period p = 0.1 s. By decreasing the switching period the
solution of the switched DAE and that of the averaged model
become close to each other as shown in Fig. 4, where a
switching period p = 0.02 s is chosen.
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Fig. 3. Simulation results for the circuit as shown in Figure 2, with p =
0.1 s: (a) state–space solutions, (b) time evolution of x1, (c) time evolution
of x2, (d) time evolution of x3.
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Fig. 4. Simulation results for the circuit as shown in Figure 2, with p =
0.02 s: (a) state–space solutions, (b) time evolution of x1, (c) time evolution
of x2, (d) time evolution of x3.

V. CONCLUSIONS

This paper studied the averaging method for linear
switched differential algebraic equations (DAEs). Via a sim-
ple example we showed that a trivial generalization of the
ODE case is not possible due to the presence of jumps. By
assuming that the consistency projectors commute we define
an averaged model in the case of the homogeneous linear
switched DAEs with the switching signal that periodically
switches between two modes. The main result (Theorem 2)
says that the error between the solution of the switched DAEs
and that of the corresponding averaged model is of the order
of the switching period. The work reported here is just an
initial step in the investigation of averaging techniques for

switched DAEs and opens interesting lines of research. For
instance it could be of interest to define an averaged model
considering switched DAEs with more than two modes,
or for solution with impulses. Other directions of future
research could be to investigate averaging for switched DAEs
with state-dependent switching functions. Also, the possible
usefulness of the averaged system for the stability analysis
is an interesting challenge.
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