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Abstract

The dynamic model of a power system is the combination of the power flow equations and the dynamic
description of the generators (the swing equations) resulting in a differential-algebraic equation (DAE).
For general DAEs solvability is not guaranteed in general, in the linear case the coefficient matrices have
to satisfy a certain regularity condition. We derive a solvability characterization for the linearized power
system DAE solely in terms of the network topology. As an extension to previous result we allow for higher
order generator dynamics. Furthermore, we show that any solvable power system DAE is automatically of
index one, which means that it is also numerically well posed. Finally, we show that any solvable power
system DAE is stable but not asymptotically stable.
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1. Introduction

The modeling, analysis and simulation of the
power grid is of high importance to ensure reliable
and efficient power generation now and in the fu-
ture. A common dynamical model of power grids
on the transmission level is a description with the so
called swing equations (linear or nonlinear ODEs)
for the generators in combination with the power
flow equations (nonlinear algebraic equations), see
e.g. [1]. This combination results in a nonlinear
differential-algebraic equation (DAE). This nonlin-
ear DAE model was only studied by a few authors,
e.g. in the context of bifurcation [2, 3, 4], observer
design [5, 6], pseudospectra analysis [7] and cyber-
physical security [8]. There are no general results
available for the solvability and stability of non-
linear DAEs, therefore, one often considers a lin-
earized model. Even in the linear case existence
and uniqueness of solutions of general DAEs is not
trivial (see e.g. [9]) and we have investigated these
issues in [10].

Our main contribution in this note is the anal-
ysis of a linear DAE model of power grids which
takes into account higher order generator models,
i.e. instead of modeling a generator with just one
rotating mass, we model a generator (together with
the turbines) as several coupled rotating masses.
This more detailed generator model is for exam-

ple necessary to better understand effects like sub
synchronous resonances [11]. For this more sophis-
ticated DAE model we generalize the solvability
characterization from [10], i.e. we show that exis-
tence and uniqueness of solutions (well-posedness)
can be checked by a simple topological condition of
the connectivity of the network graph. For the first
time, we also derive a stability characterization for
this linear DAE model. We show that any well-
posed linear power grid DAE model is stable, but
it is not asymptotically stable. As a consequence
small nonlinear disturbance can make the whole
power grid DAE unstable and therefore we claim
that it might be dangerous to rely on the linear
model when studying stability of power grids.

It is common to simplify the original power
grid DAE model to an ordinary differential equa-
tion (ODE) model by resolving the algebraic con-
straints, however this is only feasible when the DAE
model has index one. We show that this is indeed
the case when the power grid does not contain dis-
connected loads, so one may wonder what the ad-
vantages of a DAE formulation is. First of all, the
modeling as a DAE is much simpler as it is not
necessary to solve the algebraic constraints; in par-
ticular, when using automated modeling tools one
usually obtains a DAE. Secondly, when consider-
ing the possibility of faults leading to sudden struc-
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tural or topological changes (e.g. the disconnection
of power lines) the underlying algebraic constraints
change; hence the resulting ODEs are not “compat-
ible” anymore with each other. Although, we do not
investigate these issues here, our results presented
in a DAE framework will be a starting point for
future research concerning the analysis and control
of power grids in the presence of sudden structural
changes.

2. Derivation of power system DAE

We consider a power network consisting of n ∈ N
generators (connected to n generator buses) and
m ∈ N load buses interconnected by transmission
lines. The transmission lines are described by Π-
models (see [12, 1]). The electrical interconnections
of the generators with the power grid are repre-
sented by constant voltage behind transient reac-
tance models (see [13, 1]) and the mechanical inter-
connection of the i-th generator with driving tur-
bines is modeled with ηi ∈ N rotating masses as
illustrated in Figure 1.
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Figure 1: A multi-mass model for the i-th generator with
ηi = 4 masses.

The linear differential equations representing the
dynamic behavior of the i-th generator are

α̇i(t) = ωi(t)

M iω̇i(t)= −Diωi(t)−Kiαi(t) + P ig(t)− P ie(t),

where, omitting the time dependency, αi =
(αi1, . . . , α

i
ηi)
> ∈ Rηi and ωi = (ωi1, . . . , ω

i
ηi) are

the angles and the angular velocities1 of the ηi ro-
tating masses, P ig = (pig,1, . . . , p

i
g,ηi)

> ∈ Rηi is the
generator power acting on the rotating masses (the

1In fact, here ωi denotes the relative deviation from a
constant nominal angular velocity.

turbines2) and P ie = (0, . . . , 0, pie) ∈ Rηi is the elec-
trical power acting in the opposite direction on the
last rotating mass (the actual generator). Further-
more the matrices M i, Di,Ki ∈ Rηi×ηi have the
following structures:

M i =

mi1 mi2 ...
miηi


Di =


di11+d

i
12 −di12

−d112 di22 + di12 + di23 −di23

−diηi-2,ηi-1 diηi-1,ηi-1
+diηi-2,ηi-1

+diηi-1,ηi
−diηi-1,ηi

−diηi-1,ηi diηi,ηi
+diηi-1,ηi

. . . . . . . . .

Ki =


ki12 −ki12
−k112 ki12 + ki23 −ki23

−kiηi-2,ηi-1 kiηi-2,ηi-1
+kiηi-1,ηi

−kiηi-1,ηi
−kiηi-1,ηi kiηi-1,ηi

. . . . . . . . .

with positive entries mi
p, d

i
pq, k

i
pq for corresponding

indexes p, q ∈ {1, 2 . . . , ηi}. The electrical power pie
acting on the i-th generator is modeled via the con-
stant voltage behind transient reactance assump-
tion [14] in terms of the generator angle αiηi and
generator bus voltage angle θi. In particular, we
assume that the mathematical expression for the
electrical power derived for constant αiηi and θi (i.e.
when the dynamical system is in steady state) is
also valid for slowly time varying αiηi and θi. As-
suming furthermore (c.f.[8, 10]) that the difference
between αiηi and θi is small and that the genera-
tor bus voltage amplitude is locally regulated to be
constant (and given in per unit), we can express pie
linearly as follows

pie(t) =
1

zi
(αiηi(t)− θ

i(t))

where zi > 0 is the transient reactance of the gen-
erator. Assuming furthermore that the bus voltage
angle differences θi − θj , i, j = 1, 2, . . . , n + m are
small and that the conductances between the buses
are negligible, we can linearize the power flow equa-
tions (c.f. [10]) to obtain the linear constraints

pi(t) + pie(t) =

n+m∑
j=1

bij(θ
i(t)− θj(t)),

for i = 1, . . . , n,

pi(t) =

n+m∑
j=1

bij(θ
i(t)− θj(t)),

for i = n+ 1, . . . , n+m,

2For ηi > 1 the last rotating mass is usually not a turbine,
i.e. pig,ηi = 0.
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where bij = bji ≥ 0 is the susceptance between bus
i and bus j and pi(t) is the active power infeed
at the i-th bus representing time-dependent loads.
Note that bij = 0 means that bus i and j are not
directly connected, in particular the matrix B =
[bij ]i,j=1,...,n+m is a weighted adjacency matrix of
the power network graph. Altogether this model
results in the following linear network DAE:

Eẋ = Ax+ Bu (1)

with variables

x :=

( α
ω
θ̂
θ̃

)
∈ Rnη+nη+n+m, nη :=

n∑
i=1

ηi

u :=

(
Pg

P̂
P̃

)
∈ Rnη+n+m,

α := ( α1
1,...,α

1
η1
,α2

1,...,α
2
η2
,...,αn1 ,...,α

n
ηn )
> ∈ Rnη ,

ω := ( ω1
1 ,...,ω

1
η1
,ω2

1 ,...,ω
2
η2
,...,ωn1 ,...,ω

n
ηn )
> ∈ Rnη ,

θ̂ := ( θ1,...,θn )
>∈Rn, θ̃ := ( θn+1,...,θn+m )

>∈Rm,

Pg := ( P 1
g
>
,...,Png

> )
> ∈ Rnη ,

P̂ := ( p1,...,pn )
>∈Rn, P̃ := ( pn+1,...,pn+m )

>∈Rm,

and matrices

E =

[ Inη 0 0 0

0 M 0 0
0 0 0 0
0 0 0 0

]
,

A =

[ 0 Inη 0 0

−K−HZ−1H> −D HZ−1 0

Z−1H> 0 −R1−Z−1 −R2

0 0 −R3 −R4

]
,

B =

[
0 0 0
Inη 0 0

0 In 0
0 0 Im

]
,

with the block entries M := diag(M1, . . . ,Mn),
D := diag(D1, . . . , Dn), K := diag(K1, . . . ,Kn),
Z := diag(z1, . . . , zn),

H :=

[
H1

...
Hn

]
∈ Rnη×n, Hi :=

[
0
e>i

]
∈ Rηi×n,

ei ∈ Rn is the i-th unit vector and R1 ∈ Rn×n,
R4 ∈ Rm×m, R2 = R>3 ∈ Rn×m are such that[

R1 R2

R3 R4

]
:= R :=

−B + diag

n+m∑
j=1

b1k, . . . ,

n+m∑
j=1

bn+m,k

 , (2)

i.e. R is the (weighted) Laplacian of the graph de-
scribing the connectivity of the power grid.

The following properties of K, D and R given
above are a simple consequence from Gershgorin’s
Circle Theorem.

Remark 2.1.

1. The symmetric matrices K and R are positive
semidefinite.

2. The symmetric matrix D is positive definite.

3. Regularity of linearized model

Definition 3.1 (Regularity). A matrix pair (E,A)
with square matrices E,A ∈ Rk×k, k ∈ N, is
called regular if, and only if, det(Es − A) is not
the zero polynomial. Furthermore, we call a DAE
Eẋ = Ax+Bu regular when the corresponding ma-
trix pair (E,A) is regular.

It is well known (c.f. [15]) that regularity of a
linear DAE is necessary and sufficient for existence
and uniqueness of solutions. Hence characterizing
regularity for the linearized power system model is
crucial; without regularity it is not possible to run
simulations or make stability statements.

Fortunately, there is a surprisingly simple and
also very intuitive characterization for regularity
solely in terms of the power network’s graph topol-
ogy.

Theorem 3.2 (Regularity characterization of
power network DAE). Consider the linearized DAE
model (1) for a power system with n generators and
m load buses. Then this DAE is regular (i.e. exis-
tence and uniqueness of solutions is guaranteed) if,
and only if, every load bus is connected via a path
in the network graph (given by the adjacency matrix
B) to a generator bus. In particular, if the whole
power network graph is connected, then existence
and uniqueness of solutions is guaranteed.

Before presenting the proof we state the following
key lemma.

Lemma 3.3. For a power network with symmet-
ric susceptance matrix B ∈ R(n+m)×(n+m), let
R ∈ R(n+m)×(n+m) be given as in (2). Then the
following statements are equivalent:

1. Every load bus is connected (via a path in the
network graph) with a generator.

2. There exists a positive definite Q = Q> ∈
Rn×n such that

R+
[
Q 0
0 0

]
is positive definite. (3)
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3. For all positive definite Q = Q> ∈ Rn×n (3)
holds.

Proof. Invoking Corollary 7.2 from the Appendix
we see that x>Rx ≥ 0 for all x ∈ Rn+m and
x>Rx = 0 if, and only if xi = xj for all (i, j) with
bij 6= 0. In particular, x>Rx = 0 implies xi = xj
for all buses i, j which are connected via a path in
the network graph.
1 ⇒ 3. By positive semidefiniteness of R we have
for all x ∈ Rn+m and all positive definite Q that

x>
(
R+

[
Q 0
0 0

])
x = 0 ⇔
x>Rx = 0 ∧ x>

[
Q 0
0 0

]
x = 0.

By assumption every load bus j ∈ {n + 1, n +
2, . . . , n + m} is connected to some generator bus
i ∈ {1, 2, . . . , n} and therefore x>Rx = 0 implies
xj = xi and x>

[
Q 0
0 0

]
x = 0 implies xi = 0. Hence

x>
(
R+

[
Q 0
0 0

])
x = 0 implies x = 0, i.e. the posi-

tive semidefinite matrix R+
[
Q 0
0 0

]
is in fact positive

definite.
3 ⇒ 2. Trivially true.
2 ⇒ 1. Seeking a contradiction assume there is a
load bus j∗ ∈ {n+ 1, . . . , n+m} which is not con-
nected with any generator bus. Define x∗ ∈ Rn+m
as follows: For j ∈ {1, 2, . . . , n + m} let x∗j = 1
if load bus j is connected via a path with node j∗

and x∗j = 0 otherwise, in particular x∗i = 0 for all
generator buses i ∈ {1, 2, . . . , n}. By construction,
x∗>Rx∗ = 0 and x∗>

[
Q 0
0 0

]
x∗ = 0, i.e. R +

[
Q 0
0 0

]
is not negative definite.

Proof of Theorem 3.2. Step 1 : We show that
(E,A) is regular if, and only if, det(L(s)) is not
identically zero, where

L(s) :=

R+
[
Z−1−Z−1H>(Ms2+Ds+K+HZ−1H>)

−1
HZ−1 0

0 0

]
.

First note, that M is a diagonal matrix with non-
zero diagonal entries, hence with

W (s) := s2M + sD +K +HZ−1H>

we have that det(W (s)) is a non-zero polynomial (of
degree 2nη) and hence L(s) is indeed well-defined
as a rational matrix. Furthermore, with

Q(s) :=

 Inη
Ms+D Inη

Z−1H>W (s)−1(Ms+D) Z−1H>W (s)−1 In
Im



we have

Q(s)(Es− A) =

[ [
sInη −Inη
W (s) 0

] [
0 0

−HZ−1 0

]
0 L(s)

]
.

Since det(Q(s)) = 1 we have

det(Es− A) = det(W (s)) det(L(s))

and, recalling that det(W (s)) is not the zero poly-
nomial, the claim of Step 1 is shown.
Step 2 : We show “⇐”.

By assumption Z−1 is positive definite. Fur-
thermore, det(W (s)) is a polynomial with degree
2nη > 0, therefore we have that the symmetric
matrix Z−1H>W (λ)−1HZ−1 converges to zero for
λ→∞. Hence for sufficiently large λ ∈ R we have
that Z−1 − Z−1H>W (λ)−1HZ−1 is positive defi-
nite and by Lemma 3.3 we have that L(λ) is invert-
ible. In particular, det(L(s)) is not identically zero
and by Step 1 we conclude that (E,A) is regular.
Step 3 : We show ”⇒”.

By Step 1 we can assume that the rational func-
tion det(L(s)) is not identically zero, hence L(λ)
is an invertible matrix for almost all λ ∈ R. Sim-
ilar as in Step 2 we can choose λ ∈ R sufficiently
large so that the symmetric matrix Q := Z−1 −
Z−1H>W (λ)−1HZ−1 is positive definite and L(λ)
is invertible. Now invertibility of L(λ) = R+

[
Q 0
0 0

]
implies by Lemma 3.3 that every load bus is con-
nected to a generator.

Remark 3.4 (Invertibility of R4). Positive def-

initeness of
[
R1+Q R2

R3 R4

]
implies positive definite-

ness of R4. In view of Theorem 3.2 together with
Lemma 3.3 we can therefore conclude that regular-
ity of the power system DAE implies invertibility of
the submatrix R4 in (2).

4. Index one

For numerical simulations of a DAE the so called
index plays a crucial role. Roughly speaking the
higher the index, the more difficult it is to run nu-
merical simulations. The index of a regular DAE
is most conveniently defined in terms of the quasi-
Weierstrass form:

Lemma 4.1 (Quasi-Weierstrass form (QWF), c.f.
[16]). A square matrix pair (E,A) is regular if, and
only if, there exists invertible matrices S, T such
that

(SET, SAT ) = ([ I 0
0 N ] , [ J 0

0 I ]) (4)
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where N is nilpotent.

Definition 4.2 (Index of a linear DAE). The in-
dex of the regular matrix pair (E,A) (or the corre-
sponding DAE) is the nilpotency index of N in the
QWF (4), i.e. the minimal number ν ∈ N such that
Nν = 0.

For a DAE with index larger than one, it is pos-
sible that derivatives of the input occur in the so-
lution and inconsistent initial values lead to Dirac
impulses (and their derivatives), see e.g. [9]; both
effects may lead to numerical instabilities. For the
index-one case these problems do not occur and the
DAE is numerically solvable. We will show now
that the network graph topological condition ensur-
ing regularity (i.e. solvability of the DAE) already
implies index-one (i.e. numerical solvability).

Theorem 4.3 (Index one). Consider the linearized
power system (1). If (1) is regular, then it has
index one.

Proof. Regularity of (1) implies by Theorem 3.2
and Lemma 3.3 that

A4 := −R−
[
Z−1 0
0 0

]
is invertible. Since (E,A) can be written as

(E,A) =
([
E1 0
0 0

]
,
[
A1 A2

A3 A4

])
with invertible E1 and A4, it is easily seen that

S =
[
E−1 −E−1A2A

−1
4

0 A−1
4

]
and T =

[
I 0

−A−1
4 A3 I

]
transform (E,A) into the QWF

(SET, SAT ) =
(

[ I 0
0 0 ] ,

[
E−1

1 (A1−A2A
−1
4 A3) 0

0 I

])
.

This shows the index one property (because N =
0).

5. Stability

Definition 5.1 (Stability). A DAE Eẋ = Ax +
Bu is called stable, if and only if, for every ε >
0 there exists δ > 0 such that for any solution x
of the homogeneous DAE Eẋ = Ax the following
implication holds:

‖x(0)‖ < δ ⇒ ∀t ≥ 0 : ‖x(t)‖ < ε.

A DAE is called asymptotically stable, if and only
if, the DAE is stable and additionally any solution
of the homogenouos DAE converges to zero.

For DAEs with square coefficient matrices, the
following well known characterization of stability
holds:

Lemma 5.2. The DAE Eẋ = Ax+Bu with square
coefficient matrices (E,A) is

• asymptotically stable if, and only if,

spec(Es−A) :=

{ λ ∈ C | det(λE −A) = 0 } ⊆ CRe<0,

i.e. all generalized eigenvalues of the pair
(E,A) have negative real part.

• stable, if and only if,

spec(Es−A) ⊆ CRe≤0

and for all λ ∈ spec(Es−A)∩iR the geometric
and algebraic multiplicities of λ are equal, i.e.

dim kerC(λE −A) =

max
{
k ∈ N

∣∣∣ det(Es−A)
(s−λ)k is a polynomial

}
.

Note that in the square case non-regularity of
(E,A) implies spec(Es − A) = C, hence regular-
ity is a necessary assumption for (asymptotic) sta-
bility. Therefore, the above stability characteriza-
tion is actually a simple consequence of the quasi-
Weierstrass form (4), because the DAE Eẋ = Ax
is (asymptotically) stable if, and only if, v̇ = Jv
is (asymptotically) stable. Furthermore, for any
λ ∈ C it holds that

det(λE −A) = 0 ⇔ det(λI − J) = 0.

We can now state the main stability result. Sim-
ilar to the index-one result, regularity (i.e. unique
solvability) of the linearized power system DAE al-
ready implies stability. However, asymptotic stabil-
ity does not hold, i.e. certain initial states will not
converge to zero as time goes to infinity.

Theorem 5.3 (Stability). Consider the linearized
power system DAE (1). If (1) is regular, then it is
stable but not asymptotically stable.

Proof. It suffices to show the corresponding sta-
bility property for the ODE part in the quasi-
Weierstrass form (4). Following the lines of the
proof of Theorem 4.3, we see that J in the quasi-
Weierstrass form of (E,A) is given by

J =
[

0 I
−M−1(K+HZ−1H>+HZ−1UZ−1H>) −M−1D

]
5



where U ∈ Rn×n is such that

[ U ∗∗ ∗ ] =
(
−R−

[
Z−1 0
0 0

])−1
,

i.e. (invoking Schur’s complement) U =
(−R1 − Z−1 + R2R

−1
4 R3)−1. Note that sym-

metry of R implies symmetry of U .

Step 1 : We show that all non-zero generalized
eigenvalues have negative real parts.

Step 1a: We show Z−1 + Z−1UZ−1 is positive
semidefinite.
First note that R+

[
Z−1 0
0 0

]
is a so-called M-matrix

because it has non-positive off-diagonal entries and
is positive definite. It is a well known fact of M-
matrics (see e.g. [17]) that the inverse of an M-
matrix has non-negative entries. Hence U as the
negative of an upper left block of the inverse of an
M-matrix has non-positive entries. Since Z−1 is
a positive diagonal matrix, Z−1 + Z−1UZ−1 has
non-positive off-diagonal entries. Invoking Corol-
lary 7.2 from the Appendix it remains to show that
(1, . . . , 1)> is in the kernel of Z−1+Z−1UZ−1. Mul-
tiplying the latter from the left with−U−1Z we just
have to show that

(R1 −R2R
−1
4 R3)

( 1
...
1

)
= 0.

But this is a simple consequence from the fact that
R(1, . . . , 1)> = 0.

Step 1b: Reformulation as quadratic eigenvalue
problem.
From Step 1a we can conclude that HZ−1H> +
HZ−1UZ−1H> is positive semidefinite. Hence

K̂ := K +HZ−1H> +HZ−1UZ−1H>

is also positive semidefinite. It is now easily seen
that λ ∈ C is an eigenvalue of J if, and only if, λ
solves the quadratic eigenvalue problem

det(λ2M + λD + K̂) = 0. (5)

It is well known (see e.g. [18]) that symmetry and
positive definiteness of M and positive semidefinite-
ness of D and K̂ implies that all solutions λ ∈ C of
(5) satisfy Re(λ) ≤ 0. Furthermore, if λ ∈ C solves
(5) then there exists p ∈ Cnν \ {0} such that

p>Mp︸ ︷︷ ︸
∈R

λ2 + p>Dp︸ ︷︷ ︸
∈R\{0}

λ+ p>K̂p︸ ︷︷ ︸
∈R

= 0,

hence λ cannot be purely imaginary which shows
that all the solutions λ of (5) are either zero or
have negative real part.

Step 2 : We show that zero is an eigenvalue and
derive the corresponding eigenspace.
First observe that for x, y ∈ Rnη the following
equivalence holds:

J [ xy ] = 0 ⇔ y = 0 ∧ K̂x = 0.

We will now show that

ker K̂ = span
( 1
...
1

)
. (6)

Taking into account the block-diagonal structure of
K and HZ−1H> and Lemma 7.3 in the Appendix,
we can conclude that K + HZ−1H> is invertible
and

Ĥ :=(K+HZ−1H>)−1HZ−1=



1
...
1
1
...
1
...

1
...
1

∈R
nη×n.

Then, by definition, the following equivalence holds:

K̂x = 0 ⇔ x+ ĤUZ−1H>x = 0.

Let η̂i :=
∑i
k=1 ηi and for any x ∈ ker K̂ let x∗ :=

H>x = (xη̂1 , xη̂2 , . . . , xη̂n)>, then

xj + (UZ−1)ix
∗ = 0

∀i ∈ {1, . . . , n},
∀j ∈ {η̂i−1 + 1, . . . , η̂i} ,

where (UZ−1)i denotes the i-th row of UZ−1. In
particular,

xj = xη̂i = x∗i
∀i ∈ {1, . . . , n},
∀j ∈ {η̂i−1 + 1, . . . , η̂i} ,

(7)

and therefore

x∗ + UZ−1x∗ = 0 or, equivalently,

U−1x∗ + Z−1x∗ = 0.

Recalling that U−1 = −R1 − Z−1 + R2R
−1
4 R3 we

conclude that

(R1 −R2R
−1
4 R3)x∗ = 0.

Since we assumed that the power grid is connected
it follows that kerR = span(1, . . . , 1)> and hence
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x∗ ∈ span(1, . . . , 1)>. From (7) we can now con-
clude (6).

Step 3 : We show that the zero eigenvalue has co-
inciding algebraic and geometric multipliciy.
The eigenvalue zero of J has equal algebraic and ge-
ometric multiplicity if, and only if, there are no non-
zero nilpotent Jordan blocks in the Jordan canoni-
cal form, i.e.

ker J = ker J2.

It is easily seen that

J2 [ xy ] = 0

⇔ y = −(M−1D)−1M−1K̂x ∧ K̂D−1K̂x = 0.

Hence it suffices to show that

ker K̂ = ker K̂D−1K̂. (8)

or, equivalently,

imD−1K̂ ∩ ker K̂ = {0} (9)

Due to symmetry of the involved matrices, it holds
that

imD−1K̂ = (ker K̂D−1)⊥ = (D ker K̂)⊥.

From Step 2 and the definition of D we see that
D ker K̂ is spanned by the vector consisting of the
positive diagonal entries of D. In particular, all
non-zero vectors in the orthogonal complement of
D ker K̂ must have entries with both positive and
negative signs. Since all entries of the vectors in
ker K̂ have identical entries (and in particular iden-
tical signs), we have shown (9).

Remark 5.4 (Existence of a Lyapunov function).
It can be shown (cf. [19, 4.8]) that for any stable
index-1 DAE there exists a pair of matrices (P,Q)
such that

A>PE + E>PA = −E>QE, Q ≥ 0

and V (x) = x>E>PEx is a Lyapunov function

6. Conclusion

We have derived a linearized DAE model for a
power system with generators consisting of multi-
ple coupled rotating masses. Utilizing the special
structure of the resulting linear DAE we have char-
acterized regularity, index one and stability.

The extension of this results to the nonlinear
case is still an open topic; in particular, since the
linearized model is not asymptotically stable Lya-
punov’s Indirect Method cannot be applied to con-
clude that the nonlinear model is at least locally
stable. Further research with novel approaches
are necessary to establish stability of the nonlinear
DAE model.

Sudden structural changes (like disconnection
of lines or deactivation of generators) result in a
switched DAE model and stability of each mode
does not guarantee stability of the switched system,
it is therefore necessary to investigate the effect of
switches on stability of power systems and will be
a topic of future research.

7. Appendix

Lemma 7.1. Consider a symmetric matrix W =
[wij ]i,j=1,...,n ∈ Rn×n with W (1, 1, . . . , 1)> = 0, i.e.
each diagonal element is the negative sum of the
off-diagonal row elements. Then, for all x ∈ Rn,

x>Wx = −
n∑
i=2

i−1∑
j=1

wij(xi − xj)2.

Proof. This is a straight-forward calculation (c.f.
the first part of the proof of [10, Lem. 2]).

Corollary 7.2. Let W ∈ Rn×n be a symmetric
matrix with W (1, 1, . . . , 1)> = 0 and non-positive
off-diagonal entries, i.e. W is a (weighted) Lapla-
cian of some graph. Then the following statements
hold:

1. W is positive semidefinite.

2. Let GW = (V ,E ) be the graph induced by W ,
i.e. V = {1, . . . , n} and (i, j) ∈ E if, and only
if, wij 6= 0, then for any x ∈ Rn

x>Wx = 0 ⇔ ∀(i, j) ∈ E : xi = xj .

3. GW is connected if, and only if,

kerW = span
( 1
...
1

)
.

Lemma 7.3. Let K ∈ Rn×n be a symmetric tridi-
agonal matrix with positive off-diagonal entries and
with kerK = span(1, 1, . . . , 1)> (i.e. the diagonal is
the negative sum of the off-diagonal elements next
to it). Then for any z 6= 0 the matrix

K +

[ 0 ··· 0 0
...

...
...

0 ··· 0 0
0 ··· 0 z

]
7



is invertible and the last column of the inverse is
(1/z, 1/z, . . . , 1/z)>.

Proof. This is easily seen by carrying out Gauß-
eliminations.
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