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Abstract— A wide class of linear switched systems (LSS) can
be represented by a sequence of modes each one described by a
set of differential algebraic equations (DAEs). LSS can exhibit
discontinuities in the state evolution, also called jumps, when the
state at the end of a mode is not consistent with the DAEs of the
successive mode. Then the problem of defining a proper state
jump rule arises when an inconsistent initial condition is given.
Regularity and passivity conditions provide two conceptually
different jump maps respectively. In this paper, after proving
some preliminary result on the jump analysis within the
regularity framework, it is shown the equivalence of regularity-
based and passivity-based jump rules. A switched capacitor
electrical circuit is used to numerically confirm the theoretical
result.

Index Terms— Switched systems, Passivity-based jump rule,
Regularity, Wong sequences, Inconsistent initial conditions.

I. INTRODUCTION

When modeling electrical circuits which exhibit sudden
structural changes (e.g. component faults or opening/closing
of ideal switches) an interesting question is how the state
variables jump in order to satisfy the new algebraic con-
straints. A good overview of the different jump-rules is
given in [1]. A quite general modeling framework for linear
switched systems are switched differential algebraic equa-
tions (switched DAEs) [2] given as follows

Eσ(t) ξ̇(t) = Aσ(t) ξ(t) (1)

where σ : R → {1, . . . , P} is the switching signal and
Ep, Ap ∈ Rn×n determine the dynamics (and algebraic
constraints) in each mode p ∈ {1, . . . , P} of the system.

A global solution is constructed by concatenating these
single modes whose solutions can be obtained separately as
solutions of

Epξ̇(t) = Apξ(t) t ∈ [0,∞) (2a)
ξ(0−) = ξ0 ∈ Rn. (2b)

A classic solution exists only when the initial condition (2b)
fulfills the algebraic constraints which arise in the current
mode.

When modeling electrical circuits with ideal switches only,
a more economic way of modeling is via a standard state-
space system with constant matrices and virtual inputs and
outputs, which are complementary and encode the mode of
the position of the switches [1], i.e. open circuit or short
circuit. In particular, in each switching configuration some
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of the “outputs” are set to zero leading to a DAE. In this
framework the following principles are used to derive a jump
rule in response to an inconsistent initial value:

1) Minimization of the energy.
2) Conservation of the charge/flux.
3) The Laplace transform approach.

In [1] it was shown that under a certain passivity assumption
these three approaches lead to equivalent jump rules, which
we will call passivity-based jump rule in the following.

Under a certain regularity assumption one can prove
[2] that for any switching signal and any initial condition
the switched DAE (1) (or equivalently (2)) has a unique
solution (but within a distributional solution framework). In
particular, the regularity assumption implies unique jumps
at the switching times. The jump rule based on regularity
was not studied in [1] while passivity was not considered
in [2]; but, of course, electrical circuits which are passive
and regular play an important role and the question arises
whether the passivity-based jump rule is equivalent to the
regularity-based jump rule. The answer is yes and is our
main result (Theorem 6) we would like to present.

The paper is structured as follows. In Section II we present
our system class of linear switched systems and how each
mode can be rewritten as a DAE. The passivity-based jump
rule is introduced in Section III and afterwards the regularity-
based jump rule is introduced. Our main result is given in
Section V. We illustrate the theoretical results with a basic
switched capacitor electrical circuit example.

We use the following notation: For x ∈ Rn, u ∈ Rm we let
col(x, u) ∈ Rn+m be the vector which results in stacking x
over u. For a matrix M ∈ Rp×q and a subspace S ⊆ Rq the
subspace MS ⊆ Rp denotes the image space of S under M ,
i.e. MS := { Ms ∈ Rp | s ∈ S }; for S ⊆ Rp the subspace
M−1(S) ⊆ Rq denotes the preimage of S under M , i.e.
M−1(S) := { x ∈ Rq | Mx ∈ S }. For v ∈ Rn and a set
of integersN ⊆ {1, 2, . . . , n}, with vN we refer to the vector
obtained from v by considering only the components in the
set N . Similarly, if M ∈ Rn1×n2 is a matrix, with MN1N2

we refer to the matrix obtained from M by considering only
the rows in the set N1 ⊆ {1, 2, . . . , n1} and the columns in
the set N2 ⊆ {1, 2, . . . , n2}. The symbol • stands for the
whole set of rows or columns.

II. LINEAR SWITCHED SYSTEMS AND DAES

A linear switched system (LSS) within a linear comple-
mentarity framework can be described as follows [1], [3]

ẋ(t) = Ax(t) +Bz(t) (3a)
w(t) = Cx(t) +Dz(t) (3b)



together with the complementarity condition

zi(t)wi(t) = 0 ∀i = 1, 2, . . . , q ∀t ∈ R (4)

where A,B,C,D are matrices of suitable dimensions,
x(t) ∈ Rn is called semi-state and the vectors z(t) ∈ Rq
and w(t) ∈ Rq are ideal switch variables satisfying (4),
i.e. at each time instant either the component zi or the
corresponding component wi must be zero.

Such description is not to be confused with the switched
linear system model as in [4] given by ẋ = Aσx; in par-
ticular, the latter does not contain any algebraic constraints,
hence the problem of inconsistent initial values is not present.

The solution of an LSS can be obtained by cascading
the solutions of the models corresponding to the different
modes. In that sense one can restrict the state jump analysis
occurrence at the time instant when a generic mode is
activated. Then without loss of generality in what follows
the state jump at the initial time instant is considered and the
indication of the subscript ‘p’ denoting the specific mode is
omitted.

In order to select a mode of the system it is necessary
to define a switch configuration through the subset π ⊆
{1, 2, . . . , q}. Say m is the size of the index set π. When
π is active the complementarity condition (4) becomes

wi = 0 if i ∈ π (5a)
zi = 0 if i ∈ πc, (5b)

where πc = {1, 2, . . . , q} \ π. By combining (3) and (5) we
obtain for each switch configuration π a simplified structure:

ẋ = Ax+B•πzπ (6a)
0 = Cπ•x+Dππzπ (6b)

zπc = 0 (6c)
wπc = Cπc•x. (6d)

The model (6a)–(6b) can be simply rearranged into

ẋ = Kx+ Lu (7a)
0 = Mx+Nu (7b)

where u = zπ , K = A, L = B•π , M = Cπ•, and N = Dππ .
The model (7) can be rewritten in the form of a DAE.

Let us define the state vector as col(x, u). Then (7) can be
written as the following DAE

E

(
ẋ
u̇

)
= A

(
x
u

)
, (8)

where E,A ∈ R(n+m)×(n+m) are square matrices given by

E =

[
I 0
0 0

]
, A =

[
K L
M N

]
(9)

where I is the identity matrix of order n. Note that the special
structure of the matrix pair (E,A) as in (9) is no restriction
of generality as any matrix pair can be brought into this form
via suitable coordinate transformations. However, in order to
apply the passivity based analysis the special structure of (7)
is necessary.

III. STATE JUMPS

In order to define a solution for (7), or equivalently for (8)–
(9), one must fix an initial condition, say col(x0, u0). It
can be proved that for any initial condition there exists a
solution of (8) in the distributional framework [2, Thm 6.5.1]
provided the matrix pair (E,A) is regular (see Section IV).
The occurrence of a state jump can be formalized by means
of the consistency concept.

Definition 1: An initial condition col(x0, u0) is called
consistent for the DAE (8) if, and only if, there exists an
absolutely continuous solution col(x(·), u(·)) of (8) such
that col(x(0), u(0)) = col(x0, u0). Otherwise the initial
condition is called inconsistent.

Definition 2: The consistency space C(E,A) is the set of
all vectors col(x0, u0) which represent a consistent initial
condition for a given DAE.

A. Projection Matrix

Switching between different DAEs each given by (8) in
general leads to inconsistent initial values because the consis-
tency space need not to coincide. In order to obtain a solution
the state must clearly jump to a consistent initial value
first. In order to correctly define this state re-initialization
a jump rule must be chosen which unambiguously maps
an inconsistent initial value into a consistent one. Since we
are in a linear framework, this jump rule must be linear
and also should map consistent initial values on themselves,
i.e. the jump rule is given by a projection matrix Π ∈
R(n+m)×(n+m): (

x+
0

u+
0

)
= Π

(
x−0
u−0

)
(10)

Definition 3: We define the jump space JΠ as the set of
all vectors which represent a valid re-initialization for the
jump rule taken into account, i.e.

Jπ :=
{

∆ ∈ Rn+m
∣∣∣ ∃( x−

0

u−
0

)
: Π
(
x−
0

u−
0

)
=
(
x−
0

u−
0

)
−∆

}
According to (10), since Π is an idempotent matrix, it

results

C(E,A) = im Π (11a)
JΠ = ker Π (11b)

with C(E,A)⊕JΠ = Rn+m. Therefore, for a given projection
matrix Π, any initial condition col(x−0 , u

−
0 ) ∈ Rn+m can be

uniquely decomposed as follows(
x−0
u−0

)
=

(
x+

0

u+
0

)
+

(
∆x

∆u

)
(12)

with col(x+
0 , u

+
0 ) ∈ C(E,A) and col(∆x,∆u) ∈ JΠ.

B. Passivity-based Jump Rule

A common re-initialization strategy [1] is based on the
passivity-based jump rule. In order to apply such a rule
the passivity concept must be introduced, which can be
characterized as follows.



Definition 4: [1, Prop IV.3] A quadruple (A,B,C,D) is
passive if, and only if, the following linear matrix inequality[

A
>
Q+QA QB − C>

B
>
Q− C −(D +D

>
)

]
≤ 0. (13)

has a positive semi-definite solution Q = Q> ≥ 0. We call
(A,B,C,D) stritly passive if (13) has a positive definite
solution Q = Q> > 0.

Assume that the quadruple (A,B,C,D) associated to the
LSS (3) is strictly passive with a positive definite solution
Q > 0 of (13) and consider the system (7) resulting for a
generic mode. It can be shown that the passivity-based jump
rule for the semi-state x is independent of u and can be
obtained by solving the following quadratic program with
respect to x+

0 [1, Thm VI.1]:

minimize 1
2 (x+

0 − x
−
0 )>Q(x+

0 − x
−
0 ) (14a)

subject to Mx+
0 ∈ im N. (14b)

In particular, (14) has a unique solution which can be
written as

x+
0 = Πx

pas x
−
0 (15)

with

Πx
pas = I −Q−1MTPT (PMQ−1MTPT )†PM (16)

where † refers to the pseudoinverse matrix and P is a matrix
such that kerP = im N .

Moreover, under the strict passivity condition, it is also
proved in [1] that

im Πx
pas = M−1(im N) (17a)

ker Πx
pas = L kerN (17b)

in particular, M−1(im N) is the consistency space for the
semi-state x and

M−1(im N)⊕ L kerN = Rn. (18)

IV. REGULARITY AND WONG SEQUENCES

An alternative way for defining a jump rule is based on
the DAE representation (8) and on the concept of regularity.

Definition 5: A matrix pair (E,A) is regular if det(sE−
A) is not the zero polynomial.

The regularity property allows to obtain an explicit solu-
tion formula for (7) by employing the quasi-Weierstrass form
as described below.

Theorem 1 ([5]): Given a regular matrix pair (E,A) there
exist invertible matrices S, T such that (E,A) is transformed
into a quasi-Weierstrass form

(SET, SAT ) =

([
I 0
0 Z

]
,

[
J 0
0 I

])
(19)

where J is some matrix and Z is a nilpotent matrix.
In view of [6] we call (19) quasi-Weierstrass form because

we do not assume that J and Z are in Jordan canonical form.
A convenient method to find the transformation matrices

S, T is to employ the so called Wong sequences:

Definition 6 ([7]): Consider a matrix pair (E,A), then the
following subspace sequences are called Wong sequences:

Vi+1 = A−1(EVi) (20a)

Wi+1 = E−1(AWi) (20b)

with V0 = Rn+m, W0 = {0}.
Theorem 2: [6, Prep 2.4] If the matrix pair (E,A) is

regular then the Wong sequences get stationary after finitely
many steps. Denote V∗ and W∗ the limits, and choose full
rank matrices V,W such that V∗ = im V and W∗ = im W
then

T = [V,W ] (21a)

S = [EV,AW ]−1 (21b)

yield the quasi-Weierstrass form (19).
It is easily seen that with the help of the quasi-Weierstrass

form a unique jump rule based on the regularity assumption
follows. In fact, in [2, Thm 6.5.1] it is proved that the
consistency projector is given by

Πreg = T

[
I 0
0 0

]
T−1 (22)

with the matrix T given by (21a). Note that this projection
maps onto V∗ along W∗, thus it holds

C(E,A) = im Πreg = V∗, (23a)
JΠreg = ker Πreg =W∗. (23b)

Since the matrix E is assumed to have the special struc-
ture (9), in what follows some original preliminary results
are obtained.

Firstly it can be proved that, similarly to the passivity-
based jump rule, the vector u0 does not influence re-
initialization of the semi-state x.

Theorem 3: Consider the DAE (8) with the matrix E
given by (9) and assume the matrix pair (E,A) is regular.
By using the Wong sequences define the spaces V∗ = im V
and W∗ = im W and the regularity projector (22). Then the
following condition holds

Πreg

(
x0

u0

)
= Πreg

(
x0

0

)
. (24)

for all x0 ∈ Rn and u0 ∈ Rm.
Proof: First notice that

{0} =W0 (W1 ( · · · (Wi =Wi+1 =W∗. (25)

Moreover

W1 = [ I 0
0 0 ]
−1

([ K L
M N ]W0) = ker [ I 0

0 0 ] ⊆ W∗ = ker Πreg.

Then (
0
u

)
∈ ker

[
I 0
0 0

]
⊆ ker Πreg (26)

which with simple algebraic manipulations implies (24):

Πreg

(
x
u

)
= Πreg

[(
x
0

)
+

(
0
u

)]
= Πreg

(
x
0

)
. (27)



Since we are only interested in the semi-state x, in what
follows we seek a restriction of the jump map. First we
define the restriction of the spaces V∗ and W∗ relative to
the variable x.

Theorem 4: Consider the DAE (8) with the matrix E
given by (9) and assume the matrix pair (E,A) is regular.
Let V∗ and W∗ be the spaces which terminate the Wong
sequences. Define the projector

Πx =
[
I 0

]
. (28)

Then the spaces V∗x = ΠxV∗ and W∗x = ΠxW∗ fulfil

V∗x ⊕W∗x = Rn. (29)
Proof: In the first part of the proof it is demonstrated

that
V∗x ∩W∗x = {0}. (30)

Let x̄ ∈ V∗x ∩W∗x , then ∃ v ∈ V∗, w ∈ W∗ such that

x̄ = Πxv ∧ x̄ = Πxw. (31)

Then it follows

Πxv = Πxw (32a)

v − w ∈ ker Πx = ker

[
I 0
0 0

]
⊆ W∗. (32b)

Therefore since w ∈ W∗ it is also true that v ∈ W∗. Finally
since v ∈ V∗ ∩W∗ = {0} we obtain

x̄ = Πxv = 0. (33)

Choose x ∈ Rn and consider the vector col(x, 0) ∈ Rn+m,
then there must exist a unique pair v ∈ V∗ and w ∈ W∗ such
that (

x
0

)
= v + w. (34)

It follows x = Πxv + Πxw ∈ V∗x +W∗x and thus the claim.

Thus, in analogy of (12), any inconsistent initial value x−0
can be decomposed as follows

x−0 = x+
0 + ∆x (35)

with unique x+
0 ∈ V∗x and ∆x ∈ W∗x . In particular, the

jump-rule is given by a projector with image V∗x and kernel
W∗x , i.e. the regularity-based projector is given by choosing
any two full rank matrices Vx,Wx such that V∗x = im Vx,
W∗x = im Wx and

Πx
reg = [Vx,Wx]

[
I 0
0 0

]
[Vx,Wx]−1. (36)

The following lemma shows that the regularity-based
projector for the semi-state x can also be calculated directly
with the help of the consistency projector Πreg and the
canonical projector Πx = [I, 0].

Lemma 1: Consider the DAE (8) with the matrix E given
by (9) and assume the matrix pair (E,A) is regular. Say Πreg
the corresponding consistency projector. Then

Πx
reg = Πx Πreg ΠT

x . (37)

TABLE I
CONSISTENCY AND JUMP SPACES

Regularity Passivity

Consistency space V∗
x M−1im N

Jump space W∗
x L kerN

Relevant spaces for the re-initialization of the semi-state x.

The (surprisingly technical) proof is carried out in the
Appendix.

The spaces V∗x and W∗x can also be obtained as the result
of subspace iterations as the following result shows.

Theorem 5: Consider the DAE (8) with the matrix E
given by (9) and assume the matrix pair (E,A) is regular.
Then the following algorithm provides the space V∗x andW∗x
after finitely many steps.

Vix =

{
x ∈ Rn

∣∣∣ ∃u ∈ Rm, Kx+ Lu ∈ Vi−1
x

Mx+Nu = 0

}
(38a)

Wi
x =

{
x ∈ Rn

∣∣∣ x̄ ∈ Wi−1
x

ū ∈ Rm ,
x = Kx̄+ Lū
0 = Mx̄+Nū

}
(38b)

with V0
x = Rn and W0

x = {0}.
The proof is carried out in the Appendix.

V. EQUIVALENCE RESULT

In this section we prove the main result of the paper, i.e.
the equivalence between regularity- and passivity-based jump
rules. Therefore, we first assume that both regularity and
strict passivity are satisfied by the system under study. Table I
compares the fundamental spaces related to the x-restriction
for both the aforementioned theories.

Theorem 6 (Equivalence between jump rules): Consider
the DAE (8)–(9) and assume the matrix pair (E,A)
is regular and (K,L,M,N) is strictly passive. Let the
regularity-based jump projector Πx

reg be given as in Lemma 1
and let the the passivity-based jump-projector Πx

pas be given
by (16), then

Πx
reg = Πx

pas. (39)
Proof: The first crucial observation is that we have two

expressions for the consistency space for the semi-state x.
One is given by the canonical projection V∗x of the limit of
the first Wong sequence V∗ and the second one as the image
of the passivity-jump projector, i.e.

V∗x = M−1 im N.

A more careful analysis of the formula for V1
x reveals

V1
x =

{
x ∈ Rn

∣∣∣ ∃u ∈ Rm, Mx+Nu = 0
}

=
{
x ∈ Rn

∣∣∣ Mx ∈ im N
}

= M−1 im N = V∗x .

Hence we can conclude that the Vix-sequence ends after
just one step.



Fig. 1. Two capacitors connected in parallel by a switch.

Similarly, the calculation of W1
x reveals

W1
x =

{
x ∈ Rn

∣∣∣ ū ∈ Rm x = Lū
0 = Nū

}
= L kerN.

To prove the equality of the two jump-rules it remains to be
shown that W∗x =W1

x .
From (18) it follows that

Rn = M−1(im N)⊕ L kerN = V∗x ⊕W1
x.

Invoking (29) this implies

dimW1
x = dimW∗x

and together with W1
x ⊆ W∗x we can conclude L kerN =

W1
x =W∗x .

VI. EXAMPLE

In this section we deploy a canonical switched system,
consisting of an electrical network with two capacitors
connected together via an ideal switch (Fig. 1).

We first evaluate the projection maps Πx
reg and Πx

pas and
then we compare them in order to show numerically the
equivalence of the jump rules.

A straightforward analysis of the network lead us to(
ẋ1

ẋ2

)
=

[
0 0
0 0

](
x1

x2

)
+

[ 1
C1

− 1
C2

]
z1 (40a)

w1 =
[

1 −1
](x1

x2

)
+
[

0
]
z1 (40b)

with either w1 = 0 or z1 = 0.
The system has two different modes depending on the state

of the switch S1. When it is open the network current z1 is
forced to be null, vice versa when it is closed the voltage
w1 is zero.

Taking this into account, we consider the following sce-
nario. Initially the switch is open and therefore the voltages
across the capacitors remain constant to a certain value
x0 = col(x01, x02). At the time t = t0 the switch closes
and the semi-state variables might receive a jump towards a
value that is consistent for the new DAE.

The DAEs (8) which describe the system when the switch
is closed are given by (40) with w1 = 0 and u = z1.

The consistency and jump spaces are

M−1 im N = kerM = span
{(

1
1

)}
L kerN = im L = span

{(
1/C1

−1/C2

)}
.

The consistency projector relative to the x variable can be
easily derived

Πx
reg =

[
1 1/C1

1 −1/C2

] [
1 0
0 0

] [
1 1/C1

1 −1/C2

]−1

=

[
C1

C1+C2

C2

C1+C2

C1

C1+C2

C2

C1+C2

]
.

(41)

In order to evaluate the passivity-based projector we need
to solve the LMI problem in (13). To this end, Matlab LMI
toolbox comes in handy by assigning numerical values to the
network parameters. We chose: C1 = 1µF and C2 = 2µF .

We find then a solution matrix

Q =

[
0.006051 0.012101
0.012101 0.024203

]
,

and choosing a matrix P =
[

1
]

we can finally evaluate the
projector in (15)

Πx
pas =

[
0.3333 0.6667
0.3333 0.6667

]
. (42)

A straightforward substitution of the numerical values
in (41) leads to the same matrix of (42).

VII. CONCLUSIONS

State jumps is an interesting phenomenon which occurs
in linear switched systems due to the presence of mode-
dependent algebraic constraints. The practical interest of this
problem is demonstrated by the wide literature dedicated to
the analysis of state jumps in electrical circuits. Different
rules can be defined to re-initialize the state at a value
which is consistent with the differential algebraic equations
of the active mode. In this paper we have shown that
the regularity based jump rule derived purely mathematical
coincides with a jump rule based on physical considerations
(energy minimization).

APPENDIX

A. Proof Lemma 1

Define Π∗ = ΠxΠregΠT
x .

1. Π∗x = x ⇔ x ∈ V∗x
Consider x ∈ V∗x , it results

Π∗x = ΠxΠregΠT
x x = ΠxΠreg ( x0 )

and using Theorem 3

ΠxΠreg ( x0 ) = ΠxΠreg ( xu ) ∀u ∈ Rm.

Choose now ū : col(x, ū) ∈ V∗, it follows

Π∗x = ΠxΠreg ( xū ) = Πx ( xū ) = x



2. im Π∗ = V∗x .

im Π∗ = im ΠxΠregΠT
x

=
{

ΠxΠregΠT
x x

∣∣∣ x ∈ Rn
}

=
{

ΠxΠreg ( x0 )
∣∣∣ x ∈ Rn

}
=
{

ΠxΠreg ( xu )
∣∣∣ ( xu ) ∈ Rn+m

}
=
{

Πx ( x̄ū )
∣∣∣ ( x̄ū ) ∈ V∗

}
=
{
x̄
∣∣ x̄ ∈ V∗x} = V∗x .

3. ker Π∗ =W∗x .
“ ⊇ ”

ker Π∗ = ker ΠxΠregΠT
x ⊇ ker ΠregΠT

x

but

ker ΠregΠT
x =

{
x ∈ Rn

∣∣∣ Πreg ΠT
x x = 0

}
=
{
x ∈ Rn

∣∣∣ Πreg ( x0 ) = 0
}

=
{
x ∈ Rn

∣∣∣ Πreg ( xu ) = 0, ∀u ∈ Rm
}

=
{
x ∈ Rn

∣∣∣ ( xu ) ∈ ker Πreg, ∀u ∈ Rm
}

= Πx ker Πreg = ΠxW∗ =W∗x .

“ ⊆ ”
choose x ∈ ker Π∗ = ker ΠxΠregΠT

x , it results

ΠxΠregΠT
x x = 0 ⇒ ΠxΠreg ( x0 ) = 0

⇒ ΠxΠreg ( xu ) = 0, ∀u ∈ Rm

⇒ Πx ( x̄ū ) = 0 ⇒ x̄ = 0

where col(x̄, ū) = col(0, ū) = Πreg col(x, u). Now note that

( 0
ū ) ∈ ker [ I 0

0 0 ] ⊆ W∗ = ker Πreg

therefore

Πreg ( xu ) ∈ ker Πreg, ∀u ∈ Rm

⇒Πreg Πreg ( xu ) = 0,

and since Πreg is a projector

Π2
reg ( xu ) = Πreg ( xu ) = 0.

Finally for all u ∈ Rm, col(x, u) ∈ ker Πreg and

x ∈ Πx ker Πreg = ΠxW∗ =W∗x

B. Proof Theorem 5

Let us apply the Wong sequences algorithm to the specific
matrix pair in (7)

Vi = [ K L
M N ]

−1
([ I 0

0 0 ]Vi−1) .

Considering now the definition of pre-image we obtain

Vi =
{

( xu ) ∈ Rn+m
∣∣ [ K L

M N ] ( xu ) ∈ [ I 0
0 0 ]Vi−1

}
= { ( xu ) | Kx+ Lu ∈ ΠxVi−1, Mx+Nu = 0 }

If we restrict this space to x by defining Vix = ΠxVi we
finally have

Vix =

{
x ∈ Rn

∣∣∣ u ∈ Rm, Kx+ Lu ∈ Vi−1
x

Mx+Nu= 0

}
.

Similar calculations for W space sequence lead to

Wi = [ I 0
0 0 ]
−1

([ K L
M N ]Wi−1)

=
{

( xu ) ∈ Rn+m
∣∣∣ ∃ ( x̄ū ) ∈ Wi−1,

[ I 0
0 0 ] ( xu ) = [ K L

M N ] ( x̄ū )}

=
{

( xu ) ∈ Rn+m
∣∣ ∃ ( x̄ū ) ∈ Wi−1,

x = Kx̄+ Lū, 0 = Mx̄+Nū} .

Define now the restriction Wi
x = ΠxWi

Wi
x =

{
x ∈ Rn

∣∣∣ x̄ ∈ Wi−1
x ,

ū ∈ Wi−1
u ,

x = Kx̄+ Lū,
0 = Mx̄+Nū

}
where Wi

u =
[

0 I
]
Wi has the following property

Wi
u =

{
{0} if i = 0
Rm if i > 0

.

Moreover

W1
x = ΠxW1 = Πx ker ( I 0

0 0 ) = {0}

and thus, we can redefine the algorithm as it follows

Wi
x =

{
x ∈ Rn

∣∣∣ x̄ ∈ Wi−1
x ,

ū ∈ Rm,
x = Kx̄+ Lū,
0 = Mx̄+Nū

}
with W0

x = {0}.
In such way it turns out that Wi

x = ΠxWi+1. The two
algorithms defining the Vix and Wi

x must converge after
finitely many steps since they are defined to be just the
projection of the full spaces Vi and Wi which in turn
converge.
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