Stabilization of switched DAEs via fast switching

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany supported by DFG-Grant TR 1223/2-1

GAMM Annual Meeting 2016
Braunschweig, March 9th, 2016, 14:50-15:10

T

Technische Universität KAISERSLAUTERN

Goal: Stabilization

Find σ such that $x(t) \rightarrow 0$ as $t \rightarrow \infty$.

Usual approach

State-depending switching $x \mapsto \sigma(x)$

Problem

State x may not be available for feedback control
\rightarrow observer with estimation \hat{x}
\rightarrow non-matching switching signals $\sigma(x) \neq \sigma(\widehat{x}), \quad$ NO seperation principle

Alternative approach

Time-dependent switching $t \mapsto \sigma(t)$

Example: Stabilization of switched ODEs

$$
\dot{x}=A_{\sigma} x, \quad A_{1}=\left[\begin{array}{cc}
-2 & 1 \\
0 & 1
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
1 & -1 \\
1 & -2
\end{array}\right]
$$

Unstable modes
x_{2}

Periodic switching signal:

\Rightarrow Stability:

Why does the example work?

Convex combination

$$
\frac{1}{2} A_{1}+\frac{1}{2} A_{2}=\frac{1}{2}\left[\begin{array}{cc}
-1 & 0 \\
1 & -1
\end{array}\right] \quad \text { Hurwitz! }
$$

Classical averaging result

For switched ODE

$$
\dot{x}=A_{\sigma} x, \quad \sigma(t) \in\{1,2, \ldots, P\}
$$

any convex combination

$$
\dot{x}=A_{\mathrm{av}} x, \quad A_{\mathrm{av}}:=\sum_{k=1}^{P} d_{k} A_{k}, \quad d_{1}, d_{2}, \ldots, d_{P} \in[0,1], \sum_{k=1}^{P} d_{k}=1,
$$

can be approximated arbitrarily well by sufficiently fast switching.

Corollary

\exists Hurwitz convex combination \Rightarrow Stabilizable by fast (time-dependent) switching

Switched DAEs

Switched linear DAE (differential algebraic equation)

(swDAE) $\quad E_{\sigma(t)} \dot{x}(t)=A_{\sigma(t)} x(t) \quad$ or short $\quad E_{\sigma} \dot{x}=A_{\sigma} x$
with

- switching signal $\sigma: \mathbb{R} \rightarrow\{1,2, \ldots, P\}$
- piecewise constant, right-continuous
- locally finitely many jumps
- matrix pairs $\left(E_{1}, A_{1}\right), \ldots,\left(E_{P}, A_{P}\right)$
- $E_{k}, A_{k} \in \mathbb{R}^{n \times n}, k=1, \ldots, P$
- $\left(E_{k}, A_{k}\right)$ regular, i.e. $\operatorname{det}\left(s E_{k}-A_{k}\right) \not \equiv 0$

Main motivation

Modeling of electrical circuits

Special features

- Changing algebraic constraints
- Induced jumps
\rightarrow consistency projectors Π_{p}
- Dirac impulses possible

Example: Unbounded growth rate due to fast switching

Example: $E_{\sigma} \dot{x}=A_{\sigma} \times$ with

$$
\begin{aligned}
\left(E_{1}, A_{1}\right) & =\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right]\right), & \left(E_{2}, A_{2}\right)=\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right) \\
\Pi_{1} & =\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right], & \Pi_{2}=\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

For fast periodic switching: $\quad x(t) \approx\left(\Pi_{2} \Pi_{1}\right)^{k} x^{0}=\left[\begin{array}{ll}0 & 0 \\ 0 & 2\end{array}\right]^{k} x^{0}=\left[\begin{array}{cc}0 & 0 \\ 0 & 2^{k}\end{array}\right] x^{0}, \quad k:=\left\lfloor\frac{t}{p}\right\rfloor$

Some DAE notation

Theorem (Quasi-Weierstrass form, Weierstrass 1868)

$$
\begin{aligned}
&(E, A) \text { regular }: \Leftrightarrow \quad \operatorname{det}(s E-A) \not \equiv 0 \quad \Leftrightarrow \quad \exists S, T \text { invertible: } \\
&(S E T, S A T)=\left(\left[\begin{array}{ll}
1 & 0 \\
0 & N
\end{array}\right],\left[\begin{array}{ll}
J & 0 \\
0 & 1
\end{array}\right]\right), \quad N \text { nilpotent }
\end{aligned}
$$

Can easily obtained via Wong sequences (Berger, Ilchmann \& T. 2012)

Definition (Consistency projector \& Flow matrix)

$$
\Pi:=T\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] T^{-1} \quad A^{\text {diff }}:=T\left[\begin{array}{ll}
J & 0 \\
0 & 0
\end{array}\right] T^{-1}
$$

Corollary (Explicit solution formula)

Solution of $E \dot{x}=A x$ on $(0, \infty)$ is given by:

$$
x(t)=e^{A^{\text {difi }} t} \Pi x\left(0^{-}\right)
$$

The Mironchenko-Wirth-Wulff Approach

Key observation

$$
e^{A^{\text {difit }} t} \Pi \approx e^{A^{\varepsilon} t} \quad \text { with } A^{\varepsilon}:=T\left[\begin{array}{cc}
J & 0 \\
0 & -\frac{1}{\varepsilon} I
\end{array}\right] T^{-1}
$$

Hence

$$
E_{\sigma} \dot{x}=A_{\sigma} x \quad \approx \quad \dot{x}=A_{\sigma}^{\varepsilon} x
$$

Theorem (Mironchenko, Wirth \& Wulff 2013)

σ stabilizes $\dot{x}=A_{\sigma}^{\varepsilon} x \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right) \quad \Rightarrow \quad \sigma$ stabilizes $E_{\sigma} \dot{x}=A_{\sigma} x$

Overall stabilization strategy

Discussion of the MWW-approach

No further assumptions needed for individual approximations

$$
x_{\sigma}\left(t^{-}\right)-x_{\sigma}^{\varepsilon}(t) \rightarrow 0 \text { as } \varepsilon \rightarrow 0
$$

$\operatorname{swODE}(\sigma, \varepsilon)$

$$
\operatorname{ODE}\left(\varepsilon, d_{1}, \ldots, d_{P}\right)
$$

$$
x_{\sigma}^{\varepsilon}(t)-x_{a v}^{\varepsilon}(t) \rightarrow 0 \text { as } p \rightarrow 0
$$

Problem

For fixed $\varepsilon>0$ it is possible that $x_{\sigma}\left(t^{-}\right)-x_{\sigma}^{\varepsilon}(t) \rightarrow \infty \quad$ as $p \rightarrow 0$

Underlying problem

Consistency projectors not explicitly considered:

- Destabilizing effect for fast switching
- Non-existence of averaged model

Direct approach

Directly utilize averaging results for switched DAEs

$$
E_{\sigma} \dot{x}=A_{\sigma} x \xrightarrow[\text { Fast switching }]{\text { Averaging }} \underset{\sim}{\operatorname{ODE}\left(d_{1}, \ldots, d_{P}\right)}
$$

Assumptions

- $\left(E_{k}, A_{k}\right)$ regular with $\Pi_{k}, A_{k}^{\text {diff }}$
- $\sigma: \mathbb{R} \rightarrow\{1,2, \ldots, P\}$ periodic with
- period $p>0$
- duty cycles $d_{1}, \ldots, d_{P} \in(0,1)$
- For $\Pi_{\cap}:=\Pi_{P} \Pi_{P-1} \cdots \Pi_{1}$:

$$
\begin{array}{ll}
\forall k: & \operatorname{im} \Pi_{k} \supseteq \operatorname{im} \Pi_{\cap} \\
\forall k: & \operatorname{ker} \Pi_{k} \subseteq \operatorname{ker} \Pi_{\cap} \tag{PA}
\end{array}
$$

Theorem (Mostacciuolo, T., Vasca 2016)
Averaged system:

$$
\dot{x}_{a v}=\Pi_{\cap} A_{a v}^{\text {diff }} \Pi_{\cap x}, x(0)=\Pi_{\cap x_{0}}
$$

where $A_{a v}^{\text {diff }}:=\sum_{k=1}^{P} d_{k} A_{k}^{\text {diff. }}$. If $(P A)$ then

$$
\left\|x_{\sigma, p}-x_{a v}\right\|_{\infty}=O(p)
$$

on every compact interval in $(0, \infty)$

Stabilization via fast switching

Corollary

> Averaged system is exponentially stable for some d_{1}, \ldots, d_{P} $$
\Rightarrow \exists p>0 \text { sufficiently small: } E_{\sigma} \dot{x}=A_{\sigma} \times \text { exponentially stable }
$$

Key steps of proof:
(1) More precise $O(p)$-bound for all $T>0$

$$
\left\|x_{\sigma, p}\left(T^{-}\right)-x_{a v}(T)\right\| \leq C(T) \cdot\left\|x\left(0^{-}\right)\right\| \cdot p
$$

(2) Chose $T>0$ such that

$$
\left\|x_{a v}(T)\right\|<\left\|x_{a v}(T / 2)\right\|
$$

(3) Chose $p>0$ sufficiently small such that

$$
x_{\sigma, p}\left(T^{-}\right) \approx x_{a v}(T) \quad \text { and } \quad x_{\sigma, p}\left(T / 2^{-}\right) \approx x_{a v}(T / 2)
$$

so that we can conclude

$$
\left\|x_{\sigma, p}(T)\right\|<\left\|x_{\sigma, p}(T / 2)\right\|
$$

(1) Conclude exponential stability.

Summary

Task

Stabilize $\quad E_{\sigma} \dot{x}=A_{\sigma} x \quad$ via time-depending switching rule

MWW-Approach

- Indirect via approximation of (swDAE) by ($s w \mathrm{ODE}_{\varepsilon}$)
- Need switching signal independent of ε
- Don't need averaged system
A. Mironchenko, F. Wirth and K. Wulff: Stabilization of switched linear differentialalgebraic equations via time-dependent switching signals, Proc. IEEE CDC 2013.
A. Mironchenko, F. Wirth, and K. Wulff: Stabilization of switched linear differential algebraic equations and periodic switching, IEEE Transactions Automatic Control 2015.

Averaging approach

- Directly use the averaging approach
- Projector assumption to ensure existence of averaged sytem
- Find Hurwitz convex combination
E. Mostacciuolo, S. Trenn, F. Vasca: Averaging for Switched DAEs: Convergence, Partial Averaging and Stability, submitted for publication.

