Stabilization of switched DAEs via fast switching

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany supported by DFG-Grant TR 1223/2-1

GAMM Annual Meeting 2016 Braunschweig, March 9th, 2016, 14:50–15:10

	OOO	Stabilization via fast switching
Control task		<i>Î</i> :
$\sigma \longrightarrow \begin{array}{c} \text{Switched System} \\ \text{State variable } \end{array}$	$\sum_{\alpha} x$	Goal: Stabilization Find σ such that $x(t) \rightarrow 0$ as $t \rightarrow \infty$.
Usual approach		
State-depending switching $x \vdash$	$\sigma(x)$	

Problem

State x may not be available for feedback control

- ightarrow observer with estimation \widehat{x}
- \rightarrow non-matching switching signals $\sigma(x) \neq \sigma(\hat{x})$, NO seperation principle

Alternative approach

Time-dependent switching $t \mapsto \sigma(t)$

Example: Stabilization of switched ODEs

Stephan Trenn

T

Why does the example work?

Convex combination

$$\frac{1}{2}A_1 + \frac{1}{2}A_2 = \frac{1}{2} \begin{bmatrix} -1 & 0\\ 1 & -1 \end{bmatrix}$$
 Hurwitz!

Classical averaging result

For switched ODE

$$\dot{x} = A_{\sigma}x, \quad \sigma(t) \in \{1, 2, \dots, P\}$$

any convex combination

$$\dot{x} = A_{av}x, \quad A_{av} := \sum_{k=1}^{P} d_k A_k, \quad d_1, d_2, \dots, d_P \in [0, 1], \ \sum_{k=1}^{P} d_k = 1,$$

can be approximated arbitrarily well by sufficiently fast switching.

Corollary

 \exists Hurwitz convex combination \Rightarrow Stabilizable by fast (time-dependent) switching

Stephan Trenn

Switched DAEs

Switched linear DAE (differential algebraic equation)

(swDAE) $E_{\sigma(t)}\dot{x}(t) = A_{\sigma(t)}x(t)$ or short $E_{\sigma}\dot{x} = A_{\sigma}x$

with

- switching signal $\sigma: \mathbb{R} \to \{1, 2, \dots, P\}$
 - piecewise constant, right-continuous
 - locally finitely many jumps
- matrix pairs $(E_1, A_1), \ldots, (E_P, A_P)$
 - $E_k, A_k \in \mathbb{R}^{n \times n}, \ k = 1, \dots, P$
 - (E_k, A_k) regular, i.e. $det(sE_k A_k) \neq 0$

Main motivation

Modeling of electrical circuits

Special features

- Changing algebraic constraints
- Induced jumps
 - \rightarrow consistency projectors Π_p
- Dirac impulses possible

 Switched DAEs
 Stabilization via fast switching

 O●O
 00000

Example: Unbounded growth rate due to fast switching

Stephan Trenn

Introduction

Some DAE notation

Introduction

Theorem (Quasi-Weierstrass form, WEIERSTRASS 1868)

(E, A) regular : \Leftrightarrow det $(sE - A) \neq 0 \Leftrightarrow \exists S, T$ invertible:

$$(SET, SAT) = \begin{pmatrix} \begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \end{pmatrix}, \quad N \text{ nilpotent}$$

Can easily obtained via Wong sequences (Berger, Ilchmann & T. 2012)

Switched DAEs

000

Definition (Consistency projector & Flow matrix)

$$\boldsymbol{\mathsf{\Pi}} := T \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} T^{-1} \qquad \qquad \boldsymbol{\mathsf{A}}^{\mathsf{diff}} := T \begin{bmatrix} J & 0 \\ 0 & 0 \end{bmatrix} T^{-1}$$

Corollary (Explicit solution formula)

Solution of $E\dot{x} = Ax$ on $(0, \infty)$ is given by:

$$x(t) = e^{\mathbf{A}^{\mathsf{diff}}t} \mathbf{\Pi} x(0^{-})$$

Stephan Trenn

î:

Key observation

$$e^{A^{\operatorname{diff}}t} \Pi pprox e^{A^{\varepsilon}t}$$
 with $A^{\varepsilon} := T \begin{bmatrix} J & 0 \\ 0 & -rac{1}{\varepsilon}I \end{bmatrix} T^{-1}$

Hence

$$E_{\sigma}\dot{x} = A_{\sigma}x \quad \approx \quad \dot{x} = A_{\sigma}^{\varepsilon}x$$

Theorem (Mironchenko, Wirth & Wulff 2013)

The Mironchenko-Wirth-Wulff Approach

 $\sigma \text{ stabilizes } \dot{x} = A_{\sigma}^{\varepsilon} x \quad \forall \varepsilon \in (0, \varepsilon_0) \qquad \Rightarrow \qquad \sigma \text{ stabilizes } E_{\sigma} \dot{x} = A_{\sigma} x$

Overall stabilization strategy

Stephan Trenn

î:

Discussion of the MWW-approach

Problem

For fixed arepsilon>0 it is possible that $x_\sigma(t^-)-x_\sigma^arepsilon(t) o\infty$ as p o 0

Underlying problem

Consistency projectors not explicitly considered:

- Destabilizing effect for fast switching
- Non-existence of averaged model

T

Directly utilize averaging results for switched DAEs

$$E_{\sigma}\dot{x} = A_{\sigma}x$$
Averaging
ODE (d_1, \dots, d_P)
Fast switching

Assumptions

Direct approach

- (E_k, A_k) regular with Π_k , A_k^{diff}
- $\sigma:\mathbb{R} \to \{1,2,\ldots,P\}$ periodic with
 - period p > 0
 - duty cycles $d_1,\ldots,d_P\in(0,1)$
- For $\Pi_{\cap} := \Pi_P \Pi_{P-1} \cdots \Pi_1$:

$$\begin{array}{ll} \forall k : & \operatorname{im} \Pi_k \supseteq \operatorname{im} \Pi_{\cap} \\ \forall k : & \operatorname{ker} \Pi_k \subseteq \operatorname{ker} \Pi_{\cap} \end{array}$$
 (PA)

Theorem (Mostacciuolo, T., Vasca 2016) Averaged system:

$$\dot{x}_{av} = \Pi_{\cap} A^{\mathrm{diff}}_{av} \Pi_{\cap} x, \ x(0) = \Pi_{\cap} x_0$$

where $A_{av}^{diff} := \sum_{k=1}^{P} d_k A_k^{diff}$. If (PA) then

$$\|x_{\sigma,p}-x_{\mathsf{av}}\|_\infty=O(p)$$

on every compact interval in $(0,\infty)$

T

Stabilization via fast switching

Corollary

Averaged system is exponentially stable for some $d_1, ..., d_P$ $\Rightarrow \exists p > 0$ sufficiently small: $E_{\sigma}\dot{x} = A_{\sigma}x$ exponentially stable

Key steps of proof:

```
• More precise O(p)-bound for all T > 0
```

$$\|x_{\sigma,p}(T^-) - x_{av}(T)\| \leq C(T) \cdot \|x(0^-)\| \cdot p$$

2 Chose T > 0 such that

 $||x_{av}(T)|| < ||x_{av}(T/2)||$

• Chose p > 0 sufficiently small such that

$$x_{\sigma,p}(T^-) \approx x_{av}(T)$$
 and $x_{\sigma,p}(T/2^-) \approx x_{av}(T/2)$

so that we can conclude

 $\|x_{\sigma,p}(T)\| < \|x_{\sigma,p}(T/2)\|$

Conclude exponential stability.

Stephan Trenn

Summary

Task

Stabilize $E_{\sigma}\dot{x} = A_{\sigma}x$ via time-depending switching rule

MWW-Approach

- Indirect via approximation of (swDAE) by (swODE_ε)
- Need switching signal independent of ε
- Don't need averaged system
- A. Mironchenko, F. Wirth and K. Wulff: Stabilization of switched linear differentialalgebraic equations via time-dependent switching signals, Proc. IEEE CDC 2013.
 - A. Mironchenko, F. Wirth, and K. Wulff: Stabilization of switched linear differential algebraic equations and periodic switching, IEEE Transactions Automatic Control 2015.

Averaging approach

- Directly use the averaging approach
- Projector assumption to ensure existence of averaged sytem
- Find Hurwitz convex combination
- E. Mostacciuolo, S. Trenn, F. Vasca: Averaging for Switched DAEs: Convergence, Partial Averaging and Stability, submitted for publication.