Observer design for switched DAEs

... and what has Achim to do with it?

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany supported by DFG-Grant TR 1223/2-1

> Birthday colloquium Achim Ilchmann 12. February 2016, Elgersburg

My first work with Achim: Funnel control, of course.

2004 CCA/ISIC/CACSD

Adaptive tracking within prescribed funnels

Aim: output tracking of nonlinear system by proportional error feedback

My first work without Achim: Switched systems

CDC-ECC'05

ℓ^p Gain Bounds for Switched Adaptive Controllers Mark French^a and Stephan Trenn^b

Sevilla, December 13th, 2005

 $^{\rm a}$ School of Electronics and Computer Science, University of Southampton, UK $^{\rm b}$ Institute of Mathematics, Technical University Ilmenau, DE

Stephan Trenn

Observer design for switched DAEs

My first talk in Elgersburg, exactly 10 years ago

Anfangswertprobleme bei differential-algebraischen Gleichungen (DAEs)

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

Elgersburg, 13. Februar 2006

Differential-algebraische Gleichungen ©00	Distributionen 00000	Anfang 0000	swertprobleme 00	Zusammenfassung
Differential-algebraische Gleichungen				
$E(\cdot) \dot{x} = A(\cdot) x + B(\cdot) u \tag{1}$				(1)
$E, A \in C^{\omega}(\mathbb{R}; \mathbb{R}^{n \times n}), B \in C^{\omega}(\mathbb{R}; \mathbb{R}^{n \times m}) $				(1)
				_
Theorem (Campbell-Petzold 1983)				
(1) analytisch lösbar				
\iff				
$\exists U \in C^{\omega}(\mathbb{R}, \mathit{Gl}_n), egin{pmatrix} x_1 \ x_2 \end{pmatrix} = U^{-1}x:$				
$N(\cdot) \overset{\dot{x}_1}{\dot{x}_2}$	$= A_1(\cdot) x_1 + \\ = x_2 + $	$B_1(\cdot) u, \\ B_2(\cdot) u,$	$N = \begin{bmatrix} 0 & * \\ & \ddots & \\ 0 & & 0 \end{bmatrix}$	

Stephan Trenn

Institut für Mathematik. Technische Universität IIm

Anfangswertprobleme bei differential-algebraischen Gleichungen (DAEs)

Stephan Trenn

Discussion of example

- Non-observability of individual modes
- Several switches are necessary for reconstruction of states
- y on [0, t₂] does not determine x(0) but x(t₂⁺)
 ⇒ Observability vs. Determinability
- Partial knowledge of states have to be propagated in time and adequately combined with each other
- Algebraic constraints of states need to be utilized
- Dirac impulses contribute to reconstruction of state

EXCITING!

Observer design for switched DAEs

Overall observer structure

Observer design for switched DAEs
000000

$$\begin{aligned} \Xi_{\sigma} \dot{x} &= A_{\sigma} x + B_{\sigma} u \\ y &= C_{\sigma} x + D_{\sigma} u \end{aligned}$$

Definition (Determinability)

(s, t] is a determinability interval of (swDAE) : $\Leftrightarrow \forall (x, u, y), (\bar{x}, \bar{u}, \bar{y})$ solutions of (swDAE) on (s, ∞) with $u = \bar{u}$:

$$y_{(s,t]} = \bar{y}_{(s,t]} \quad \Rightarrow \quad x_{(t,\infty)} = \bar{x}_{(t,\infty)}$$

Definition (Persistent Determinability)

(swDAE) is persistently determinable : $\Leftrightarrow \forall T \ge 0 \exists$ determinability interval (s, t] with $s \ge T$

Error dynamics

1

Error dynamics (without resets)

$$\begin{array}{l} \mathbf{e} := \widehat{x} - \mathbf{x} \\ \mathbf{y}^{\mathbf{e}} := \widehat{y} - \mathbf{y} \end{array} \quad \text{are governed by} \quad \begin{array}{l} E_{\sigma} \dot{\mathbf{e}} = A_{\sigma} \mathbf{e} \\ \mathbf{y}^{e} = C_{\sigma} \mathbf{e} \end{array}$$

Determinability assumption

(swDAE) determinable on $(t_q, t_p] \Rightarrow e(t_p^+)$ reconstructable from $y_{(t_q, t_p]}^e$

$$t_1$$
 t_2 t_3 t_4 t_5 t_4 $\xi_5 := e(t_5^+)$

Perfect Estimation

With $\xi_p := e(t_p^+)$ we have $\widehat{x}_{(t_p,\infty)} = x_{(t_p,\infty)}$

Partial knowledge z_p

$$z_k = egin{pmatrix} 0 & \leftarrow \ z_k^{\mathrm{diff}} & \leftarrow \ z_k^{\mathrm{imp}} & \leftarrow \end{pmatrix}$$

consistency information determined from $y_{(t_{k-1},t_k)}$

determined from $y[t_k]$

Combining partial knowledge

On determinability interval $(t_q, t_p]$:

$$\boldsymbol{\xi_p} := \boldsymbol{e}(t_p^+) = \prod_p P_q^p \sum_{k=q+1}^p \left(\prod_{j=k+1}^p G_q^j\right) F_q^k \boldsymbol{z_k}$$

for suitable matrices Π_p , P_q^p , G_q^j , F_q^k .

Stephan Trenn

Simulations

1:

