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Averaging: Basic idea

switched
system

σ ≈
fast switching

non-switched
averaged system

Application

Fast switches occurs at

Modulations (pulse width, amplitude, frequency)

”
Sliding mode“-control

In general: fast digital controller

Simplified analyses

Stability for sufficiently fast switching
In general: (approximate) desired behavior via suitable switching

Stephan Trenn Technomathematics group, University of Kaiserslautern, Germany

Averaging for non-homogeneous switched DAEs



What is “Averaging”? Explicit solution formulas for switched DAEs Averaging result

Periodic switching signal

Switching signal

σ : R→ {1, 2, . . . ,M} has the following properties

piecewise-constant and periodic with period p > 0

duty cycles d1, d2, . . . , dM ∈ [0, 1] with d1 + d2 + . . .+ dM = 1

switched
system
xσ,p

σ, p ≈
fast switching

non-switched
averaged system

xav

Desired approximation result

On any compact time interval it holds that

‖xσ,p − xav‖∞ = O(p)
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Known results

ẋ = Aσx + Bσu, x(0) = x0

with averaged system

ẋav = Aavxav + Bavu, xav(0) = x0

where Aav =
∑M

i=1 diAi and Bav =
∑M

i=1 diBi .

No further conditions required!

References

Homogeneous case:
Brocket & Wood 1974

Inhomogenous case:
Ezzine & Haddad 1989

Numerous generalizations ...

Eσ ẋ = Aσx , x(0−) = x0

with average system

ẋav = Π∩A
diff
av Π∩xav, xav(0−) = Π∩x0

where Adiff
av =

∑M
i=1 diA

diff
i .

Not always working! Additional assumptions
needed on so called consistency projectors.

References

Two modes:
Iannelli, Pedicini, T. & Vasca 2013 ECC

Arbitrarily many modes:
Iannelli, Pedicini, T. & Vasca 2013 CDC
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Switched DAEs with inhomogenity

Eσ ẋ = Aσx + Bσu

Canonical question

Averaging for Bσ = 0
?⇒ Averaging for Bσ 6= 0

Trivial Counter Example

(E1,A1,B1) = (0, 1, 1)

(E2,A2,B2) = (0, 1,−1)

Solution of example with duty cycles d1 = d2 = 0.5:

t

x

u

−u
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Non-switched DAEs: Basic definitions

Theorem (Quasi-Weierstrass form, Weierstraß 1868)

(E ,A) regular :⇔ det(sE − A) 6≡ 0 ⇔ ∃S ,T invertible:

(SET ,SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, N nilpotent

Can easily obtained via Wong sequences (Berger, Ilchmann & T. 2012)

Definition (Consistency projector)

Π := T

[
I 0
0 0

]
T−1

Definition (Differential and impulse projector)

Πdiff := T

[
I 0
0 0

]
S , Πimp := T

[
0 0
0 I

]
S
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Explicit solution formula for DAEs

For Eẋ = Ax + Bu with regular (E ,A) let

Adiff := ΠdiffA, Bdiff := ΠdiffB, E imp := ΠimpE , B imp := ΠimpB.

Theorem (Explicit DAE solution formula, T. 2012)

Every solution x of Eẋ = Ax + Bu with regular (E ,A) is given by

x(t) = eA
difftΠx−0 +

∫ t

0

eA
diff(t−s)Bdiffu(s) ds −

n−1∑
`=0

(E imp)`B impu(`)(t), x−0 ∈ Rn

Corollary (B imp = 0 case)

If B imp = 0, then x solves Eẋ = Ax + Bu if, and only if, x solves

ẋ = Adiffx + Bdiffu, x(0) = Πx−0 , x−0 ∈ Rn
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Solution behavior of switched DAEs

Consider the switched DAE Eσ ẋ = Aσx + Bσu with regular matrix pairs (Ei ,Ai ).

Distributional solutions

Existence and uniqueness of solutions is guaranteed, however

only within a distributional solution framework

in particular, Dirac impulses may occur in x

Here we are only interested in the impulse-free part x − x [·] of the (distributional) solution x .
The effects of Dirac impulses for averaging are discussed this evening 17:40 here.

Theorem (Switched DAEs and switched ODEs with jumps)

Assume B imp
i = 0. Then x solves switched DAE ⇔ x − x [·] solves

ẋ(t) = Adiff
σ(t)x(t) + Bdiff

σ(t)u(t), ∀t /∈ { tk | tk is k-th switching time of σ }

x(t+
k ) = Πσ(t+

k )x(t−k ), k = 0, 1, 2, . . . ,
i.e.

x solves switched DAE ⇔ x − x [·] solves switched ODE with jumps
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Known averaging result

Theorem (Homogeneous case, Ianelli, Pedicini, T. & Vasca 2013)

Consider homogeneous switched DAE Eσ ẋ = Aσx with regular matrix pairs (Ei ,Ai ).
If ΠiΠj = ΠjΠi then the averaged system is given by

ẋav = Π∩A
diff
av Π∩xav, xav(0) = Π∩x

−
0

where
Π∩ = ΠMΠM−1 · · ·Π1, Adiff

av := d1A
diff
1 + d2A

diff
2 + · · ·+ dMAdiff

M ,

i.e. on every compact interval contained in (0,∞) we have

‖xσ,p − xav‖∞ = O(p).

Condition on consistency projector can be relaxed (Mostacciuolo, T. & Vasca 2016) to
the assumption that ∀i ∈ {1, 2, . . . ,M}

im Π∩ ⊆ im Πi , ker Π∩ ⊇ ker Πi
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Main result

We have seen that B imp
i = 0 is necessary for the relationship

x solves switched DAE ⇔ x − x [·] solves switched ODE with jumps

It is also sufficient to ensure averaging:

Theorem (Averaging for inhomogeneous switched DAEs)

Consider switched DAE Eσ ẋ = Aσx + Bσu with regular (Ei ,Ai ), p-periodic switching signal σ
and Lipschitz continuous u. Assume furthermore

B imp
i = 0 ∀i ∈ {1, . . . ,M},

ΠiΠj = ΠjΠi ∀i , j ∈ {1, . . . ,M}.
Then the average system is given by

ẋav = Π∩A
diff
av Π∩xav + Π∩B

diff
av u, xav(0) = Π∩x

−
0

where Π∩ = ΠMΠM−1 · · ·Π1, A
diff
av :=d1A

diff
1 +. . .+dMAdiff

M and Bdiff
av :=d1B

diff
1 +. . .+dMBdiff

M ,
i.e. on every compact set contained in (0,∞) we have

‖xσ,p − xav‖∞ = O(p).
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Illustrative example

u

R1 L iL
S1

C1vC1

S2

C2vC2 R2

With x = (vC1 , vC2 , iL)> we have the following four DAE descriptions:

S1 closed S1 closed S1 open S1 open

S2 open S2 closed S2 closed S2 open

E1 =
[
C1 0 0
0 C2 0
0 0 L

]
E2 =

[
C1 C2 0
0 0 L
0 0 0

]
E3 =

[
C1 C2 0
0 0 0
0 0 0

]
E4 =

[
C1 0 0
0 C2 0
0 0 0

]
A1 =

[
0 0 1
0 − 1

R2
0

1 0 −R1

]
A2 =

[
0 − 1

R2
1

−1 0 −R1
1 −1 0

]
A3 =

[
0 − 1

R2
0

1 −1 0
0 0 1

]
A4 =

[
0 0 0
0 − 1

R2
0

0 0 1

]
B1 =

[
0
0
1

]
, B2 =

[
0
1
0

]
, B3 =

[
0
0
0

]
, B4 =

[
0
0
0

]
.
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Simulation

t

x2
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Summary

Considered averaging for switched DAEs

Eσ ẋ = Aσx + Bσu → ẋav = Aavxav + Bavu, xav = Π∩x
−
0

Key challenges:

Jumps in the solutions
Dirac impulses (not considered here)

Key assumptions:

Commutativity of consistency projectors
Input doesn’t effect algebraic constraints (B imp

i = 0)

Possible extensions:

Role of Dirac impulses → Talk this evening 17:40
B imp

i 6= 0
Relax assumptions on projectors
Partial averaging
Nonperiodic switching signals
Stability analysis
Nonlinear case
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