Averaging for non-homogeneous switched DAEs

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany
joint work with E. Mostacciuolo, F. Vasca (Università del Sannio, Benevento, Italy)

54th IEEE Conference on Decision and Control, Osaka, Japan
Wednesday, 16th December 2015, WeB10.4, 14:30-14:50

T

Technische Universitït KAISERSLAUTERN

(1) What is "Averaging"?
(2) Explicit solution formulas for switched DAEs
(3) Averaging result

Application

- Fast switches occurs at
- Modulations (pulse width, amplitude, frequency)
- ,,Sliding mode"-control
- In general: fast digital controller
- Simplified analyses
- Stability for sufficiently fast switching
- In general: (approximate) desired behavior via suitable switching

Periodic switching signal

Switching signal

$\sigma: \mathbb{R} \rightarrow\{1,2, \ldots, M\}$ has the following properties

- piecewise-constant and periodic with period $p>0$
- duty cycles $d_{1}, d_{2}, \ldots, d_{M} \in[0,1]$ with $d_{1}+d_{2}+\ldots+d_{M}=1$

$\left.\underset{\text { fast switching }}{\approx} \quad \begin{array}{c}\text { non-switched } \\ \text { averaged system } \\ x_{\mathrm{av}}\end{array}\right]$

Desired approximation result

On any compact time interval it holds that

$$
\left\|x_{\sigma, p}-x_{\mathrm{av}}\right\|_{\infty}=O(p)
$$

Known results

$$
\dot{x}=A_{\sigma} x+B_{\sigma} u, \quad x(0)=x_{0}
$$

with averaged system

$$
\dot{x}_{\mathrm{av}}=A_{\mathrm{av}} x_{\mathrm{av}}+B_{\mathrm{av}} u, \quad x_{\mathrm{av}}(0)=x_{0}
$$

where $A_{\mathrm{av}}=\sum_{i=1}^{M} d_{i} A_{i}$ and $B_{\mathrm{av}}=\sum_{i=1}^{M} d_{i} B_{i}$.
No further conditions required!

References

- Homogeneous case:

Brocket \& Wood 1974

- Inhomogenous case:

Ezzine \& Haddad 1989

- Numerous generalizations ...

$$
E_{\sigma} \dot{x}=A_{\sigma} x, \quad x\left(0^{-}\right)=x_{0}
$$

with average system

$$
\dot{x}_{\mathrm{av}}=\Pi_{\cap} A_{\mathrm{av}}^{\text {diff }} \Pi_{\cap} x_{\mathrm{av}}, \quad x_{\mathrm{av}}\left(0^{-}\right)=\Pi_{\cap} x_{0}
$$

where $A_{\mathrm{av}}^{\text {diff }}=\sum_{i=1}^{M} d_{i} A_{i}^{\text {diff }}$.
Not always working! Additional assumptions needed on so called consistency projectors.

References

- Two modes:

Iannelli, Pedicini, T. \& Vasca 2013 ECC

- Arbitrarily many modes:

Iannelli, Pedicini, T. \& Vasca 2013 CDC

$$
E_{\sigma} \dot{x}=A_{\sigma} x+B_{\sigma} u
$$

Canonical question

Averaging for $B_{\sigma}=0 \stackrel{?}{\Rightarrow}$ Averaging for $B_{\sigma} \neq 0$

Trivial Counter Example

$$
\begin{aligned}
& \left(E_{1}, A_{1}, B_{1}\right)=(0,1,1) \\
& \left(E_{2}, A_{2}, B_{2}\right)=(0,1,-1)
\end{aligned}
$$

Solution of example with duty cycles $d_{1}=d_{2}=0.5$:

Contents

(1) What is "Averaging"?
(2) Explicit solution formulas for switched DAEs
(3) Averaging result

Non-switched DAEs: Basic definitions

Theorem (Quasi-Weierstrass form, WeIERSTRASS 1868)

(E, A) regular $: \Leftrightarrow \operatorname{det}(s E-A) \not \equiv 0 \Leftrightarrow \quad \exists S, T$ invertible:

$$
(S E T, S A T)=\left(\left[\begin{array}{ll}
I & 0 \\
0 & N
\end{array}\right],\left[\begin{array}{ll}
J & 0 \\
0 & I
\end{array}\right]\right), \quad N \text { nilpotent }
$$

Can easily obtained via Wong sequences (Berger, Ilchmann \& T. 2012)

Definition (Consistency projector)

$$
\Pi:=T\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] T^{-1}
$$

Definition (Differential and impulse projector)

$$
\Pi^{\text {diff }}:=T\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] S, \quad \Pi^{\text {imp }}:=T\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] S
$$

Explicit solution formula for DAEs

For $E \dot{x}=A x+B u$ with regular (E, A) let

$$
A^{\text {diff }}:=\Pi^{\text {diff }} A, \quad B^{\text {diff }}:=\Pi^{\text {diff }} B, \quad E^{\text {imp }}:=\Pi^{\text {imp }} E, \quad B^{\text {imp }}:=\Pi^{\text {imp }} B .
$$

Theorem (Explicit DAE solution formula, T. 2012)

Every solution x of $E \dot{x}=A x+B u$ with regular (E, A) is given by

$$
x(t)=e^{\mathrm{d}^{\text {diff }} t} \Pi x_{0}^{-}+\int_{0}^{t} e^{A^{\text {difif }}(t-s)} B^{\text {diff }} u(s) d s-\sum_{\ell=0}^{n-1}\left(E^{\text {imp }}\right)^{\ell} B^{\text {imp }} u^{(\ell)}(t), \quad x_{0}^{-} \in \mathbb{R}^{n}
$$

Corollary ($B^{\text {imp }}=0$ case)

If $B^{\text {imp }}=0$, then x solves $E \dot{x}=A x+B u$ if, and only if, x solves

$$
\dot{x}=A^{\text {diff }} x+B^{\text {diff }} u, \quad x(0)=\Pi x_{0}^{-}, \quad x_{0}^{-} \in \mathbb{R}^{n}
$$

Solution behavior of switched DAEs

Consider the switched DAE $E_{\sigma} \dot{x}=A_{\sigma} x+B_{\sigma} u$ with regular matrix pairs $\left(E_{i}, A_{i}\right)$.

Distributional solutions

Existence and uniqueness of solutions is guaranteed, however

- only within a distributional solution framework
- in particular, Dirac impulses may occur in x

Here we are only interested in the impulse-free part $x-x[\cdot]$ of the (distributional) solution x. The effects of Dirac impulses for averaging are discussed this evening 17:40 here.

Theorem (Switched DAEs and switched ODEs with jumps)

Assume $B_{i}^{\text {imp }}=0$. Then x solves switched DAE $\Leftrightarrow x-x[\cdot]$ solves

$$
\begin{aligned}
\dot{x}(t) & =A_{\sigma(t)}^{\text {diff }} x(t)+B_{\sigma(t)}^{\text {diff }} u(t), & \forall t \notin\left\{t_{k} \mid t_{k} \text { is } k \text {-th switching time of } \sigma\right\} \\
x\left(t_{k}^{+}\right) & =\Pi_{\sigma\left(t_{k}^{+}\right)^{\prime}} x\left(t_{k}^{-}\right), & k=0,1,2, \ldots,
\end{aligned}
$$

i.e.

$$
x \text { solves switched } D A E \Leftrightarrow x-x[\cdot] \text { solves switched } O D E \text { with jumps }
$$

(1) What is "Averaging"?
(2) Explicit solution formulas for switched DAEs
(3) Averaging result

Theorem (Homogeneous case, Ianelli, Pedicini, T. \& VAScA 2013)

Consider homogeneous switched DAE $E_{\sigma} \dot{x}=A_{\sigma} \times$ with regular matrix pairs $\left(E_{i}, A_{i}\right)$. If $\Pi_{i} \Pi_{j}=\Pi_{j} \Pi_{i}$ then the averaged system is given by

$$
\dot{x}_{\mathrm{av}}=\Pi_{\cap} A_{\mathrm{av}}^{\text {diff }} \Pi_{\cap} x_{\mathrm{av}}, \quad x_{\mathrm{av}}(0)=\Pi_{\cap x_{0}^{-}}^{-}
$$

where

$$
\Pi_{\cap}=\Pi_{M} \Pi_{M-1} \cdots \Pi_{1}, \quad A_{\mathrm{av}}^{\text {diff }}:=d_{1} A_{1}^{\text {diff }}+d_{2} A_{2}^{\text {diff }}+\cdots+d_{M} A_{M}^{\text {diff }},
$$

i.e. on every compact interval contained in $(0, \infty)$ we have

$$
\left\|x_{\sigma, p}-x_{\mathrm{av}}\right\|_{\infty}=O(p) .
$$

Condition on consistency projector can be relaxed (Mostacciuolo, T. \& Vasca 2016) to the assumption that $\forall i \in\{1,2, \ldots, M\}$

$$
\operatorname{im} \Pi_{\cap} \subseteq \operatorname{im} \Pi_{i}, \quad \operatorname{ker} \Pi_{\cap} \supseteq \operatorname{ker} \Pi_{i}
$$

Main result

We have seen that $B_{i}^{\text {imp }}=0$ is necessary for the relationship

$$
x \text { solves switched DAE } \Leftrightarrow x-x[\cdot] \text { solves switched ODE with jumps }
$$

It is also sufficient to ensure averaging:

Theorem (Averaging for inhomogeneous switched DAEs)

Consider switched DAE $E_{\sigma} \dot{x}=A_{\sigma} x+B_{\sigma} u$ with regular $\left(E_{i}, A_{i}\right)$, p-periodic switching signal σ and Lipschitz continuous u. Assume furthermore

- $B_{i}^{\text {imp }}=0 \quad \forall i \in\{1, \ldots, M\}$,
- $\Pi_{i} \Pi_{j}=\Pi_{j} \Pi_{i} \quad \forall i, j \in\{1, \ldots, M\}$.

Then the average system is given by

$$
\dot{x}_{\mathrm{av}}=\Pi_{\cap} A_{\mathrm{av}}^{\text {diff }} \Pi_{\cap} x_{\mathrm{av}}+\Pi_{\cap} B_{\mathrm{av}}^{\text {diff }} u, \quad x_{\mathrm{av}}(0)=\Pi_{\cap} x_{0}^{-}
$$

where $\Pi_{\cap}=\Pi_{M} \Pi_{M-1} \cdots \Pi_{1}, A_{\mathrm{av}}^{\text {diff }}:=d_{1} A_{1}^{\text {diff }}+\ldots+d_{M} A_{M}^{\text {diff }}$ and $B_{\mathrm{av}}^{\text {diff }}:=d_{1} B_{1}^{\text {diff }}+\ldots+d_{M} B_{M}^{\text {diff }}$, i.e. on every compact set contained in $(0, \infty)$ we have

$$
\left\|x_{\sigma, p}-x_{\mathrm{av}}\right\|_{\infty}=O(p)
$$

Illustrative example

With $x=\left(v_{C_{1}}, v_{C_{2}}, i_{L}\right)^{\top}$ we have the following four DAE descriptions:

$$
\begin{array}{cccc}
S_{1} \text { closed } & S_{1} \text { closed } & S_{1} \text { open } & S_{1} \text { open } \\
S_{2} \text { open } & S_{2} \text { closed } & S_{2} \text { closed } & S_{2} \text { open } \\
E_{1}=\left[\begin{array}{lll}
C_{1} & 0 & 0 \\
0 & C_{2} & 0 \\
0 & 0 & L
\end{array}\right] & E_{2}=\left[\begin{array}{ccc}
C_{1} & C_{2} & 0 \\
0 & 0 & L \\
0 & 0 & 1
\end{array}\right] & E_{3}=\left[\begin{array}{lll}
C_{1} & C_{2} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] & E_{4}=\left[\begin{array}{ccc}
C_{1} & 0 & 0 \\
0 & C_{2} & 0 \\
0 & 0 & 0
\end{array}\right] \\
A_{1}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & -\frac{1}{R_{2}} & 0 \\
1 & 0 & -R_{1}
\end{array}\right] & A_{2}=\left[\begin{array}{ccc}
0 & -\frac{1}{R_{2}} & 1 \\
-1 & R_{2} & -R_{1} \\
1 & -1 & 0
\end{array}\right] & A_{3}=\left[\begin{array}{ccc}
0 & -\frac{1}{R_{2}} & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] & A_{4}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\frac{1}{R_{2}} & 0 \\
0 & 1
\end{array}\right] \\
B_{1}=\left[\begin{array}{ll}
0 \\
0 \\
1
\end{array}\right], & B_{2}=\left[\begin{array}{ll}
0 \\
1 \\
0
\end{array}\right], & B_{3}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], & B_{4}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
\end{array}
$$

Simulation

Summary

- Considered averaging for switched DAEs

$$
E_{\sigma} \dot{x}=A_{\sigma} x+B_{\sigma} u \quad \rightarrow \quad \dot{x}_{\mathrm{av}}=A_{\mathrm{av}} x_{\mathrm{av}}+B_{\mathrm{av}} u, x_{\mathrm{av}}=\Pi_{\cap} x_{0}^{-}
$$

- Key challenges:
- Jumps in the solutions
- Dirac impulses (not considered here)
- Key assumptions:
- Commutativity of consistency projectors
- Input doesn't effect algebraic constraints $\left(B_{i}^{\text {imp }}=0\right)$
- Possible extensions:
- Role of Dirac impulses \rightarrow Talk this evening 17:40
- $B_{i}^{\text {imp }} \neq 0$
- Relax assumptions on projectors
- Partial averaging
- Nonperiodic switching signals
- Stability analysis
- Nonlinear case

