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Modeling of electrical circuits

vS u(t)

iS
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L

iL
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vRR

Basic circuit elements

Resistor: vR(t) = R iR(t)

Capacitor: iC (t) = C d
dt vC (t)

Inductor: vL(t) = L d
dt iL(t)

Voltage source: vS(t) = u(t)

DAEs

All components are given by a differential-algebraic equation (DAE)

Eẋ = Ax + Bu
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Hierarchical model building
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Overall model
⇒ Again DAE:

Eẋ = Ax + Bu
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Recall ODEs

Ordinary differential equations (ODEs):

ẋ = Ax + f

Initial values: arbitrary

Solution uniquely determined by f and x(0)

No inhomogeneity constraints
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Simple DAE example

DAE example: 0 1 0
0 0 0
0 0 0

 ẋ =

1 0 0
0 1 0
0 0 0

 x +

f1
f2
f3



ẋ2 = x1 + f1 x1 = −f1 − ḟ2

0 = x2 + f2 x2 = −f2
0 = f3

no restriction on x3
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Conclusions from example

Solution of example:
x1 = −f1 − ḟ2

x2 = −f2
x3 free

f3 = 0 necessary

Differences to ODEs

For fixed inhomogeneity, initial values cannot be chosen arbitrarily
(x1(0) = −f1(0)− ḟ2(0), x2(0) = f2(0))

For fixed inhomogeneity, solution not uniquely determined by initial
value (x3 free)

Inhomogeneity not arbitrary

structural restrictions (f3 = 0)
differentiability restrictions ( d

dt
f2 must be well defined)
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Nilpotent DAEs


0

1
. . .
. . .

. . .

1 0

 ẋ = x + f

⇔ 0 = x1 + f1 −→ x1 = −f1
ẋ1 = x2 + f2 −→ x2 = −f2 − ḟ1

ẋ2 = x3 + f3 −→ x3 = −f3 − ḟ2 − f̈1

...
...

...

ẋn−1 = xn + fn −→ xn = −
n∑

i=1

f
(n−i)
i
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General nilpotent DAE

In general: Nẋ = x + f with N nilpotent, i.e. Nn = 0

N
d
dt⇒ N2ẍ = Nẋ + Nḟ = x + f + Nḟ

N
d
dt⇒ N3 ...

x = N2ẍ + N2 f̈ = x + f + Nḟ + N2 f̈
...

N
d
dt⇒ Nnx (n)︸ ︷︷ ︸

=0

= x +
n−1∑
i=0

N i f (i) ⇒ x = −
n−1∑
i=0

N i f (i)

Properties

Initial values: fixed by inhomogeneity

Solution uniquely determined by f

Inhomogeneity constraints:

no structural constraints
differentiability constraints:

∑n−1
i=0 N i f (i) needs to be well defined
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Underdetermined DAEs

n − 1

n
1 0

. . .
. . .

1 0
1 0

ẋ =


0 1

. . .
. . .

0 1
0 1

 x + f

⇔


ẋ1
...

ẋn−2
ẋn−1

 =


0 1

. . .
. . .

0 1
0




x1
...

xn−2
xn−1

+


0
...
0
xn

+ f

⇔ ODE with additional “input” xn

Properties

Initial values: arbitrary

Solution not uniquely determined by x(0) and f

Inhomogeneity constraints: none
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Overdetermined DAEs

n + 1

n
0

1
. . .
. . . 0

1 0
1

ẋ =


1

0
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. . . 1

0 1
0

 x + f

⇔


0

1
. . .
. . . 0

1 0


︸ ︷︷ ︸

=:N

ẋ = x +


f1
...

fn−1
fn

 ∧ ẋn = fn+1

⇔ x = −
n−1∑
i=0

N i f (i) ∧ ẋn = −
n∑

i=1

f n−i+1
i

!
= fn+1︸ ︷︷ ︸

⇔
∑n+1

i=1 f
(n+1−i)
i = 0
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Overdetermined DAEs properties

x = −
n−1∑
i=0

N i f (i) ∧
n+1∑
i=1

f
(n+1−i)
i = 0

Properties

Initial valus: fixed by inhomogeneity

Solution uniquely determined by f

Inhomogeneity constraints

structural constraint:
∑n+1

i=1 f
(n+1−i)
i = 0

differentiability constraint: f
(n+1−i)
i needs to be well defined

No other cases

All DAEs are combinations of
ODEs, nilpotent DAEs, underdetermined DAEs, overdetermined DAEs
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Equivalence

Fact 1

For any invertible matrix S ∈ Rm×m:
(x , u) solves Eẋ = Ax + Bu ⇔ (x , u) solves SEẋ = SAx + SBu

Fact 2

For coordinate transformation T ∈ Rn×n:
(x , u) solves Eẋ = Ax + Bu

x=Tz⇐⇒ (z , u) solves ET ż = ATz + Bu

Together

(x , u) solves Eẋ = Ax + Bu
x=Tz⇐⇒ (z , u) solves SET ż = SATz + SBu

Definition

(E1,A1), (E2,A2) equivalent :⇔ (E2,A2) = (SE1T ,SA1T ), short:

(E1,A1) ∼= (E2,A2)
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Quasi-Kronecker form (QKF)

Theorem (Quasi-Kronecker Form)

For any E ,A ∈ R`×m

(E ,A) ∼=





EU

I

N

EO


,



AU

J

I

AO




where (EU ,AU) consists of underdetermined blocks on the diagonal, N is
nilpotent, and (EO ,AO) consists of overdetermined diagonal blocks
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QKF Examples

Remark

0× 1 and 1× 0 underdetermined/overdetermined blocks are possible

Example:

0 1 0
0 0 0
0 0 0

 ,
1 0 0

0 1 0
0 0 0

 ∼=
 0 1

0 0

 ,
 1 0

0 1



(E ,A) from circuit ∼=





I2×2

06×6


,



0 1/C

-1/L -1/RC

I6×6
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Regularity

(E ,A) ∼=





EU

I

N

EO


,



AU

J

I

AO





Corollary (Quasi-Weierstrass-Form (QWF))

Eẋ = Ax + f has solution x for any sufficiently smooth f and each
solution x is uniquely determined by x(0) and f

⇔ (E ,A) ∼=
([

I 0
0 N

]
,

[
J 0
0 I

])
quasi-Weierstrass form

(E ,A) is then called regular (⇔ det(sE − A) not the zero polynomial).
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Definition of Wong sequences

Definition

Let E ,A ∈ Rm×n. The corresponding Wong sequences of the pair (E ,A)
are:

V0 := Rn, Vi+1 := A−1(EVi ), i = 0, 1, 2, 3, . . .

W0 := {0}, Wj+1 := E−1A(Wj), j = 0, 1, 2, 3, . . .

Note: M−1S := { x | Mx ∈ S } and MS := { Mx | x ∈ S }

Clearly, ∃i∗, j∗ ∈ N
V0 ⊃ V1 ⊃ . . . ⊃ Vi∗ = Vi∗+1 = Vi∗+2 = . . .

W0 ⊂ W1 ⊂ . . . ⊂ Wj∗ =Wj∗+1 =Wj∗+2 = . . .

Wong limits:

V∗ :=
⋂
i∈N
Vi = Vi∗ W∗ =

⋃
i∈N
Wi =Wj∗
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Wong sequences and the QWF

Theorem

The following statements are equivalent for square E ,A ∈ Rn×n:

(i) (E ,A) is regular

(ii) V∗ ⊕W∗ = Rn

(iii) EV∗ ⊕ AW∗ = Rn

In particular, with imV = V∗, imW =W∗

(E ,A) regular ⇒ T := [V ,W ] and S := [EV ,AW ]−1 invertible

and S ,T yield QWF:

(SET ,SAT ) =

([
I

N

]
,

[
J

I

])
, N nilpotent
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Calculation of Wong sequences

Remark

Wong sequences can easily be calculated with Matlab even when the
matrices still contain symbolic entries (like “R”, “L”, “C”).

function V=getPreImage(A,S)
% returns a basis of the preimage of A of the linear space spanned by
% the columns of S, i.e. im V = { x | Ax \in im S }

[m1 ,n1]= size(A); [m2,n2]= size(S);
if m1==m2

H=null ([A,S]);
V=colspace(H(1:n1 ,:));

else
error(’Both matrices must have same number of rows’);

end;
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Circuit example

u Lv

i

open switch: 0 = i ,

inductivity law: L d
dt i = v

Nilpotent DAE model[
0 0
L 0

]
ẋ = x , x =

(
i
v

)
⇒ unique solution x(t) = 0 ∀t for which switch is open

Now assume switch was closed for t < 0

⇒ Different DAE-model for t < 0

⇒ Inconsistent initial values for above DAE
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Solution of circuit example

t < 0 t ≥ 0

v = u i = 0

L d
dt i = v v = L d

dt i

Solution (assume constant input u):

t

v(t)

0 t

i(t)

0

u

δ
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Observations

u Lv

i

Observations

x(0−) 6= 0 inconsistent for [ 0 0
L 0 ] ẋ = x

unique jump from x(0−) to x(0+)

derivative of jump = Dirac impulse appears in solution
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Initial trajectory problem

Definition (Initial trajectory problem (ITP))

Given past trajectory x0 : (−∞, 0)→ Rn find x : R→ Rn such that

x
∣∣
(−∞,0) = x0

(Eẋ)
∣∣
[0,∞)

= (Ax + f )
∣∣
[0,∞)

}
(ITP)

“Theorem” (Unique jump rule)

Consider (ITP) with f = 0 and regular (E ,A) with QWF

(SET ,SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
.

Then any solution x of (ITP) satisfies

x(0+) = Π(E ,A)x(0−) where Π(E ,A) := T

[
I 0
0 0

]
T−1

is the consistency projector.
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Proof of unique jump rule “Theorem”

Let ( v
w ) = T−1x , then x solves (ITP) with f = 0 ⇔ ( v

w ) solves

v(−∞,0) = v0

v̇[0,∞) = (Jv)[0,∞)

and
w(−∞,0) = w0

(Nẇ)[0,∞) = w[0,∞)

ODE

v(t) = eJtv(0−) ∀t ≥ 0

In particular, v(0+) = v(0−)

Nilpotent DAE

w(t) = 0 ∀t > 0

In particular, w(0+) = 0

Altogether we have(
v(0+)
w(0+)

)
=

(
v(0−)

0

)
=

[
I 0
0 0

](
v(0−)
w(0−)

)
=

[
I 0
0 0

]
T−1x(0−)

hence

x(0+) = T

(
v(0+)
w(0+)

)
= T

[
I 0
0 0

]
T−1x(0−) = Π(E ,A)x(0−)
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Existence of solution

Remarks

a) Π(E ,A) = T [ I 0
0 0 ]T−1 does not depend on the specific choice of T .

b) At this point we haven’t actually shown that (ITP) has a solution!

Theorem

Let (E ,A) be regular. In the correct distributional solution space the ITP
has a unique solution for all f .

In particular, jump and Dirac impulses at t = 0 are uniquely determined.

Attention

Choosing the right solution space is crucial and not immediately clear!

Here: Solution space = piecewise-smooth distributions DpwC∞

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Definition

Switch → Different DAE models (=modes)
depending on time-varying position of switch

Definition (Switched DAE)

Switching signal σ : R→ {1, . . . ,N} picks mode at each time t ∈ R:

Eσ(t)ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t)

y(t) = Cσ(t)x(t) + Dσ(t)u(t)
(swDAE)

Attention

Each mode might have different consistency spaces
⇒ inconsistent initial values at each switch
⇒ distributional solutions, i.e. x ∈ Dn

pwC∞ , u ∈ Dm
pwC∞ , y ∈ Dp

pwC∞
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Definition

Switch → Different DAE models (=modes)
depending on time-varying position of switch

Definition (Switched DAE)

Switching signal σ : R→ {1, . . . ,N} picks mode at each time t ∈ R:

Eσ ẋ = Aσx + Bσu

y = Cσx + Dσu
(swDAE)

Attention

Each mode might have different consistency spaces
⇒ inconsistent initial values at each switch
⇒ distributional solutions, i.e. x ∈ Dn

pwC∞ , u ∈ Dm
pwC∞ , y ∈ Dp

pwC∞
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Existence and uniqueness of solutions for (swDAE)

Eσ ẋ = Aσx + Bσu

y = Cσx + Dσu
(swDAE)

Σ0 :=

{
σ : R→ {1, . . . ,N}

∣∣∣∣∣ σ is piecewise constant and

σ
∣∣
(−∞,0) is constant

}
.

Corollary (from previous section)

Consider (swDAE) with regular (Ep,Ap) ∀p ∈ {1, . . . ,N}. Then

∀ u ∈ Dm
pwC∞ ∀ σ ∈ Σ0 ∃ solution x ∈ Dn

pwC∞

and x(0−) uniquely determines x .
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Sufficient conditions for impulse-freeness

Question

When are all solutions of homogenous (swDAE) Eσ ẋ = Aσx impulse free?

Note: Jumps are OK.

Lemma (Sufficient conditions)

(Ep,Ap) all have index one (i.e. Np = 0 in QWF)
⇒ (swDAE) impulse free

all consistency spaces of (Ep,Ap) coincide (i.e. Wong limits V∗p are
identical)
⇒ (swDAE) impulse free

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Scetch of proof

Index-1-case: Consider nilpotent DAE-ITP:

(Nẇ)[0,∞) = w[0,∞)

⇒ 0 = w[0,∞)

⇒ w [0] := w[0,0] = 0

Hence an inconsistent initial value does not induce Dirac-impulse

Same consistency space for all modes

⇒ no inconsistent initial values at switch

⇒ no jumps and no Dirac-impulses
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Characterization of impulse-freeness

Theorem (Impulse-freeness)

The switched DAE Eσ ẋ = Aσx is impulse free ∀σ ∈ Σ0

⇔ Eq(I − Πq)Πp = 0 ∀p, q ∈ {1, . . . ,N}

where Πp := Π(Ep,Ap), p ∈ {1, . . . ,N} is the consistency projector.

Remark

Index-1-case ⇒ Eq(I − Πq) = 0 ∀q
Consistency spaces equal ⇒ (I − Πq)Πp = 0 ∀p, q
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Circuit example

(E1,A1) =

([
0 0
L 0

]
,

[
1 0
0 1

])
(E2,A2) =

([
0 0
L 0

]
,

[
0 1
0 1

])
Π1 =

[
0 0
0 0

]
Π2 =

[
1 0
0 0

]

E1(I − Π1)Π2 =

[
0 0
L 0

]
6= 0 ⇒ impulses possible
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Stability

Question

All modes stable
?⇒ Switched system stable?

Answer: NO! Already false for switched ODEs:

Mode 1 Mode 2 Switched

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern

Basics on Differential-Algebraic Equations (DAEs)



Motivation DAEs vs. ODEs Special DAE-cases QKF/QWF Wong sequences Inconsistent initial values Switched DAEs

Jumps and Stability: Example

E1 =

[
0 0
0 1

]
, A1 =

[
1 −1
0 −1

]
E2 =

[
0 0
1 1

]
, A2 =

[
−1 0
0 −1

]

x1

x2
non-switched

x1

x2
switched 1 ↔ 2

x1

x2
switched 1 ↔ 3

jumps destabilize

jumps do not destabilize
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Jumps and Stability: Example

E1 =

[
0 0
0 1

]
, A1 =

[
1 −1
0 −1

]
E3 =

[
0 0
0 1

]
, A3 =

[
−1 0
0 −1

]

x1

x2
non-switched

x1

x2
switched 1 ↔ 2

x1

x2
switched 1 ↔ 3

jumps destabilize jumps do not destabilize
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Summary

1 Motivation: Modeling of electrical circuits

2 DAEs: Differences to ODEs

3 Special DAE-cases
Nilpotent DAEs
Underdetermined DAEs
Overdetermined DAEs

4 Equivalence and quasi-Kronecker form/quasi-Weierstrass form

5 Wong sequences

6 Inconsistent initial values
Motivating example
Consistency projector

7 Switched DAEs
Definition and solution theory
Impulse-freeness
Stability
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