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Modeling of electrical circuits

Vi

Basic circuit elements

i | Resistor: vr(t) = RiR( )

. Capacitor: c(t) = ve(t)

51( Inductor: VL( ) dt’l-( )
Voltage source: vs(t) = u(t)

All components are given by a differential-algebraic equation (DAE)

Ex = Ax+ Bu
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Motivation
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Hierarchical model building Ve
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DAEs vs. ODEs
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DAEs vs. ODEs
000

Recall ODEs

Ordinary differential equations (ODEs):
x=Ax+f

@ Initial values: arbitrary
@ Solution uniquely determined by 7 and x(0)

@ No inhomogeneity constraints
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DAEs vs. ODEs
(o] e}

Simple DAE example

DAE example:
01 0 1 0 O fi
0 0 O0lx=10 1 O|x+1|nrh
0 0 O 0 0 O f3
Xp=x1+f x1=—f —f
O=xx+h— x2=—0h
0=~

no restriction on x3
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DAEs vs. ODEs
ooe

Conclusions from example

S

Solution of example:

xx=-h—-"0hH
X =—f
x3 free

f3 = 0 necessary

Differences to ODEs

e For fixed inhomogeneity, initial values cannot be chosen arbitrarily
(>1(0) = —£(0) — £2(0), x2(0) = £(0))

@ For fixed inhomogeneity, solution not uniquely determined by initial
value (x3 free)

@ Inhomogeneity not arbitrary

o structural restrictions (f3 = 0)
o differentiability restrictions (£ must be well defined)
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© Special DAE-cases
@ Nilpotent DAEs
@ Underdetermined DAEs
@ Overdetermined DAEs
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Special DAE-cases
o0

Nilpotent DAEs

S

! x=x+f
1 0
< 0=x1+h — x1=—h
xx=xx+h — xo=—fh—h
Xo=x3+f — x3=—f—fHh—h
)-<,,,1:Xn+fn — anfzf;.(n_i)
i—1
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Special DAE-cases
oe

General nilpotent DAE

S

In general:  Nx = x+f with N nilpotent, i.e. N" =0

d
N . .
A N2% = Nx+ Nf = x + f + Nf

d
N .. .
AE BN = N2% 4+ N2 = x + f + Nf 4+ N3f

Ni n—1 o n—1 o
L N"x(”):x—f—ZN’f(’) = x:—ZN’f(’)
=0 i=0 i=0

@ Initial values: fixed by inhomogeneity
@ Solution uniquely determined by

@ Inhomogeneity constraints:

@ no structural constraints
o differentiability constraints: 37— N'f() needs to be well defined
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Special DAE-cases
]

Underdetermined DAEs

1 0 0 1
n—1 X = X + f
1 0 0 1
1 0 0 1
)-(1 0 1 X1 0
& = S S N
)'<n—2 0 1 Xn—2 0
)-<n—1 0 Xn—1 Xn

< ODE with additional “input” x,

@ Initial values: arbitrary
@ Solution not uniquely determined by x(0) and f

@ Inhomogeneity constraints: none
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Special DAE-cases
[ 1o}

Overdetermined DAEs

S

0 1
1 . 0o .
e R N L BT T o
10 0 1
1 0]
0 fi
A X=X+ A ).<n — In41
0 fnfl
1 0 f,
=N
n—1 o n ) |
Gx==> NFfD A== """ =f,
i=0 i=1
D VAN
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Overdetermined DAEs properties

n+1

n—1
x==3 NFD A S =g
i=0 i=1

@ Initial valus: fixed by inhomogeneity

@ Solution uniquely determined by

@ Inhomogeneity constraints
et (i)
e structural constraint: » 7' f; T 0
") needs to be well defined

o differentiability constraint: ﬁ.(

All DAEs are combinations of
ODEs, nilpotent DAEs, underdetermined DAEs, overdetermined DAEs
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QKF/QWF
[ Jele]e}

‘

Equivalence

Fact 1

For any invertible matrix S € R™*™:
(x, u) solves Ex = Ax + Bu < (x,u) solves SEx = SAx + SBu

Fact 2

For coordinate transformation T g%R"X":
(x, u) solves Ex = Ax + Bu = (z,u) solves ETz = ATz + Bu

Together
(x, u) solves Ex = Ax + Bu p=iK (z,u) solves SETz = SATz + SBu

Definition
(El7 Al), (E27A2) equivalent & (E2, Az) = (SEl T,SA; T), short:

(E1, A1) = (B2, A))
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Quasi-Kronecker form (QKF) 'H

Theorem (Quasi-Kronecker Form)

For any E, A € R*m

(E,A) = ,

Eo Ao

where (Ey, Ay) consists of underdetermined blocks on the diagonal, N is
nilpotent, and (Eop, Ao) consists of overdetermined diagonal blocks
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QKF Examples 7
0 x 1 and 1 x 0 underdetermined/overdetermined blocks are possible

01 0] 100 0 1] 1 0]
Example: 0 0O 010 = 0 0f, 0 1
0 0 0] [000O [ [
_/ ] 0 1c ]
2x2 -1/L-1/RC
(E,A) from circuit = ,
O6x6 loxe6
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QKF/QWF
[e]e]e] }

Regularity

S

1%
=]
(=]

(E,A)

Corollary (Quasi-Weierstrass-Form (QWF))

Ex = Ax + f has solution x for any sufficiently smooth fand each
solution x is uniquely determined by x(0) and f

& (E,A) ql 0],? OD | quasi-Weierstrass form |

0 N|”|0 [

(E, A) is then called regular (< det(sE — A) not the zero polynomial).
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@00
Definition of Wong sequences 7
Let E,A € R™*". The corresponding Wong sequences of the pair (E, A)

i=0,1,2,3,...
j=0,1,2,3,...

are:

Vi = ATHEY),

Vo = Rn7
Wi = E_IA(VVJ')>

Wo = {0},
Note: M~1S:={x | MxeS }and MS:={ Mx | xe S }
Clearly, 4i*,j* € N

VoOViD...D Vi =Visg1 = Virgo = ...
WOCW1C...CWJ-*ZWJ*+1=WJ*+2=---

Wong limits:
Ve=(\Vi=V: W= Jwi =W
ieN

ieN
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Wong sequences and the QWF T:

Theorem

The following statements are equivalent for square E, A € R"*":
(i) (E,A) is regular
(i) V- @ W* =R"
(i) EV* @ AW* =R"
In particular, with im V = V*, im W = W*
(E,A) regular = T :=[V,W]andS :=[EV,AW] " invertible

and S, T yield QWF:

sersan= ([ ][ ]} ot
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Wong sequences
[e]e] ]

Calculation of Wong sequences

S

Wong sequences can easily be calculated with Matlab even when the
matrices still contain symbolic entries (like “R”, “L", “C").

function V=getPrelmage (A,S)
% returns a basis of the preimage of A of the linear space spanned by
% the columns of S, i.e. im V = { x | Ax \in im S }

[m1,n1]l=s%ze(A); [m2,n2]=size(S);
if mi==m2
H=null([A,S]1);
V=colspace(H(1:nl,:));
else
error (’Both matrices must have same number of rows’);
end ;
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@ Inconsistent initial values
@ Motivating example
o Consistency projector
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Inconsistent initial values
@00

Circuit example

S

o open switch: 0=1,

inductivity law: L%/ =v

LONNE
{0 0}._ _<i>
« Loo)*=% *T\v

= unique solution x(t) = 0 Vt for which switch is open

Now assume switch was closed for t < 0
= Different DAE-model for t < 0

= Inconsistent initial values for above DAE
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Inconsistent nital values
Solution of circuit example Ve
t<0 t>0
vV=u i=0
L%I =v v = L%/

Solution (assume constant input u):

v(t) i(t)
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Inconsistent initial values
[ele] J

Observations

| ‘13t

@ x(07)#0 inconsistent for [? 3] x = x

/'Y

@ unique jump from x(07) to x(0T)
@ derivative of jump = Dirac impulse appears in solution
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Inconsistent initial values
@00

Initial trajectory problem Ve

Definition (Initial trajectory problem (ITP))

Given past trajectory x° : (—00,0) — R” find x : R — R" such that

X = XO
.‘(730.0) } (ITP)

“Theorem” (Unique jump rule)

Consider (ITP) with f = 0 and regular (E, A) with QWF
/I 0| [J O
(SET, SAT) = ({0 N} | [0 /D |

Then any solution x of (ITP) satisfies

- I 0] -
x(0%) =M ax(07) | where Mg 4 = T{O 0} T

is the consistency projector.
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Inconsistent initial values
(o] Jo}

Proof of unique jump rule “Theorem” Ve
Let (%)= T 1x, then x solves (ITP) with f =0 <« () solves
V(—00,0) = VO W(—0,0) = w?
. and )
V0,00) = (IV)[0,00) (NW)[0,00) = W[o,00)
e ivotent DR
v(t) =etv(07) Vt>0 w(t)=0 Vt>0
In particular, v(0") = v(07) In particular, w(0") =0

Altogether we have

(5~ () - () - e
hence

x(0") =T <V"V((%++))> =T [(/) 8} T~1x(07) = Mg ax(07)
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Inconsistent initial values
ooe

Existence of solution

a) Neay=TI[LY] T ! does not depend on the specific choice of T.
b) At this point we haven't actually shown that (ITP) has a solution!

Let (E,A) be regular. In the correct distributional solution space the ITP
has a unique solution for all f.

In particular, jump and Dirac impulses at t = 0 are uniquely determined.

Attention

Choosing the right solution space is crucial and not immediately clear!

Here: Solution space = piecewise-smooth distributions D¢
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Switched DAEs

Contents

S

@ Switched DAEs
@ Definition and solution theory

@ Impulse-freeness
@ Stability
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Switched DAEs
[ Je]

Definition

.

S

Switch — Different DAE models (=modes)
() depending on time-varying position of switch

Definition (Switched DAE)

Switching signal o : R — {1,..., N} picks mode at each time t € R:

Ea(t))'((t) = Ag(t)X(t) =F B(,(t)u(t) (swDAE)
y(t) = Coeyx(t) + Dy(ryu(t)

Attention

Each mode might have different consistency spaces

= inconsistent initial values at each switch

= distributional solutions, i.e. x € D oo, u € DT oo, y € ]D)’;Wcoo
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Switched DAEs
[ Je]

Definition

.

S

Switch — Different DAE models (=modes)
() depending on time-varying position of switch

Definition (Switched DAE)

Switching signal o : R — {1,..., N} picks mode at each time t € R:

E,x=A,x+ B,u
= Cox + Dyu (swDAE)

Attention

Each mode might have different consistency spaces

= inconsistent initial values at each switch

= distributional solutions, i.e. x € D oo, u € DT oo, y € ]D)’;Wcoo
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Switched DAEs
oe

Existence and uniqueness of solutions for (swDAE)

E,x=A,x+ B,u
(swDAE)
y=Cox+ Dyu
o is piecewise constant and
Yo:=}% o:R—={1,...,N} } .
0|(7OC’0) Is constant

Corollary (from previous section)

Consider (swDAE) with regular (E,, Ap) Vp € {1,...,N}. Then

Vu €Dy Vo€ Xy solution x € Dy, oo

and x(0—) uniquely determines x.
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Switched DAEs
@000

Sufficient conditions for impulse-freeness

S

When are all solutions of homogenous (swDAE) E,x = A,x impulse free?

Note: Jumps are OK.

Lemma (Sufficient conditions)

@ (Ep, Ap) all have index one (i.e. N, =0 in QWF)
= (swDAE) impulse free
e all consistency spaces of (Ep, Ap) coincide (i.e. Wong limits V; are

identical)
= (swDAE) impulse free
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Switched DAEs
(o] Jole]

Scetch of proof

S

@ Index-1-case: Consider nilpotent DAE-ITP:

(NW)0,00) = Wjo,c0)
=0= W[0,00)
= W[O] = Wpo,0] = 0

Hence an inconsistent initial value does not induce Dirac-impulse

@ Same consistency space for all modes
= no inconsistent initial values at switch

= no jumps and no Dirac-impulses
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Switched DAEs
{e]e] o]

Characterization of impulse-freeness

Theorem (Impulse-freeness)

The switched DAE E,x = A,x is impulse free Vo € ¥ g

& E(I-MNyNp,=0 Vp,ge{l,...,N}

where M, :=T(g, a), p€{1,..., N} is the consistency projector.

@ Index-1-case = E4(/ —M,) =0 VYq
e Consistency spaces equal = (/I —y)l, =0 Vp, q
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Switched DAEs
{e]e]e] ]

Circuit example

S

.

em=([0 o[ 1)@m= 5[ 1))
n-fo ] o

E(l—NpyN, = [2 8} #0 = impulses possible
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Switched DAEs
[ 1o

Stability 'H

Question

? :
All modes stable =- Switched system stable?

Answer: NO! Already false for switched ODEs:

Mode 1 Mode 2 Switched

@
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Switched DAEs
(o] J

Jumps and Stability: Example Ve

0 0 1 -1 0 0 -1 0
R R e R e R T
non-switched switched 1 <> 2
X2 X2
-~ ~R~
L 4 Es- :»-?---.-\7
.‘%). -~
- +—
X1 X1

jumps destabilize
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Switched DAEs
(o] J

Jumps and Stability: Example Ve

0 0 1 -1 0 O -1 0
I R e e A T
non-switched switched 1 « 2 switched 1 <> 3
X2 X2 X2
\:‘\ ‘R\ """ '< """ }
L 4 --:»-?--—v-‘? ---+---
:ﬁ-*:\? ----(----/Z
S -5
H __(__/
| | a

X1 X1 X1

jumps destabilize jumps do not destabilize
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