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Motivating academic example
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Considered systems class

Sy

x(t) = fay(x(t)), VYt >0 with g(t) = q(t7),
x(t) = gq(t-),q0(x(t 7)), q(t) # q(t7),

x(07) = xp € R” (%)
q(t) = h(q(t™),x(t7),o(t)) Vt=0,

q(07) =qo € Q.

with its solution behavior
B={x:[0,00) = R" | 3 solution (x,q,0) of ¥ }
@ Includes time- as well as state-dependent switching

@ Includes state-jumps
@ Does not consider hybrid time domain

University of Kaiserslautern & University of Valennciennes

Stephan Trenn
Nondecreasing Lyapunov functions




Introduction
oe

Considered systems class

Sy

Hybrid system ¥

continuous state x
o(t),x0, gop —| . — x(t)
discrete state g

external switching o

with its solution behavior
B={x:[0,00) = R" | 3 solution (x,q,0) of ¥ }
@ Includes time- as well as state-dependent switching

@ Includes state-jumps
@ Does not consider hybrid time domain
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Stability and Lyapunov function definitions [—
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Definition (Asymptotic stability)
Y is asymptotically stable :< 35 € KL Vx(:) € BVt > ty:

IX(E)I < B(IIx(2)ll, t = to)
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Stability and Lyapunov function definitions H
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Definition (Lyapynov function)

V :R"” — R is called Lyapunov function :<
0 Ja1,02 € Koo : aa(lIxl) < VI(x) < a(lIx])
Q@ IBeKLvVx()eB: V(x(t) <B(V(x(t)),t —to)
@ vVw>0: p[(v,0)=v
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Nondecreasing Lyapunov functions
0

Nondecreasing Lyapunov function: Motivation

V :R"” — R is called Lyapunov function :<
Q Han,az € Koo s en([Ix]]) < V(x) < a(Ix]])
Q@ e KLvx()eB: V(x(t) <B(V(x(t)),t—to)

@ VWw=>0: p(v,0)=v

Key observation

Q@ +©@ = Asymptotic stability

X&)l < ar (B((az(lIx(O). t — to) )
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Nondecreasing Lyapunov functions
0

Nondecreasing Lyapunov function: Motivation

V :R"” — R is called Lyapunov function :<
Q Han,az € Koo s en([Ix]]) < V(x) < a(Ix]])
Q@ e KLvx()eB: V(x(t) <B(V(x(t)),t—to)

@ VWw=>0: p(v,0)=v

Key observation

Q@ +©@ = Asymptotic stability
Q@ +© =V decreasing along solutions
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Nondecreasing Lyapunov functions
0

Nondecreasing Lyapunov function: Motivation

V :R" — R is called Lyapunov function <
Q oy, az € Koo - an([x]]) < V(x) < ax([lx])
Q@ e KLvx()eB: V(x(t) <B(V(x(t)),t—to)

@ vw>0: p[(v,0)=v

Key observation

Q@ +©@ = Asymptotic stability
Q@ +© =V decreasing along solutions

If V is a norm (in particular, convex) then @ is trivially fulfilled and @ is

identical to asymptotic stability definition
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Nondecreasing Lyapunov functions
0

Nondecreasing Lyapunov function: Motivation

nondecreasing

—_——

V :R" — R is called Lyapunov function <
Q o,z € Koo - en([|x]]) < V(x) < ea([|x]])
Q@ e KLvx()eB: V(x(t) <B(V(x(t)),t—to)

Al 0N

i —

Key observation
Q+0@ = Asymptoti

00—\ deereasinz—alengselutions
Finding or constructing a nondecreasing Lyapunov function is easier.

c stability

nondecreasing = not necessarily monotonically decreasing
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Nondecreasing Lyapunov functions
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A useful Lemma

Lemma

Assume V : R" — R satisfies
(1] 3@1,&2 S ’Coo
ar(lIxll) < V(x) < @(llxl) vx eR",

@ Vx(-) € B3IX():R - R"3a; € K:

Ix(8)I < @as([Ix(t)l)) vt =0,

@ 35ekL:
V(x(t)) < B(V(X(to)), t — to) VYt > to.

Then V is a nondecreasing Lyapunov function.
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Construction for Example Class
[ Jelelele}

Contents

@ Construction of nondecreasing Lyapunov function for a generic
example class

Stephan Trenn University of Kaiserslautern & University of Valennciennes

Nondecr



Construction for Example Class
[e] lele]e}

A generic example class

Sy

X =Asx| inR?

o :R2\ {0} — {1,2,..., N} with
Qo '(i)=C={AG+puc [A>0,u>0}

C2 @) Cl

Cs
C1 = CN+1

Cn
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Construction for Example Class
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A generic example class

Sy

X =Asx| inR?

o :R2\ {0} — {1,2,..., N} with
o ail(i):C,- = { )\C;+MC;+1 ‘ )\>0,/LZO }
@ Solution flows from left to right on boundaries of cones C;
© Vectors with directions A;c; and —A;c;.1 intersect in C;
@ Solution of x; = A;x;, X,‘(O) = ¢;, satisfies HX,(A,)H < ||C,'+1||
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Construction for Example Class
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A generic example class

X =Asx| inR?

o :R2\ {0} — {1,2,..., N} with
o 0’71(1'):6,' = { )\c,-+uc,-+1 ‘ )\>0,/L20 }
@ Solution flows from left to right on boundaries of cones C;
© Vectors with directions A;c; and —A;c;;1 intersect in C;
@ Solution of x; = A;x;, X,'(O) = ¢;, satisfies HX,(A,)H < ||C,'+1||

Lyapunov function difficult to find

Asymptotic stability clear, but construction of Lyapunov function difficult.

In fact, no piecewise quadratic Lyapunov function exists in general!
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Construction for Example Class
0000
]

Nonexistence of piecewise quadratic Lyapunov function [ =

X2
€1/ Ci x = Ag(x)X
N
IS
LS o R2\ {0} — {1,2,3,4}, o L(i)=C,
CTNNIT X1
SS==Y////
- N Ar=As=[g, ], Ae=Ar=[5 707

Lemma

For the above system there is no piecewise-quadratic Lyapunov function
V :R? — R of the form V(x) = x Pix for x € C;.

A piecewise quadratic Lyapounov function can be constructed if one
allows more “pieces”. In fact, with the recent method of IERVOLINO,
VASCA and TANNELLI (2014) 108 cones are sufficient.
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Construction for Example Class
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Simple construction of nondecreasing Lyapunov functionf =

V:R2 - Ris the unique piecewise
linear function with

V(1) = RiULURUL, ... RyULy

Comparison function X : R>q — R?
piecewise linear, not continuous
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Summary
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@ Introduced and

motivated the
concept of
nondecreasing
Lyapunov
function
Applicable for
large system
class

Presented

explicit
construction for
generic example
class
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