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Switched DAEs

Switched linear DAE (differential algebraic equation)

(swDAE) Eσ(t)ẋ(t) = Aσ(t)x(t) or short Eσ ẋ = Aσx

with

switching signal σ : R→ {1, 2, . . . , P}
piecewise constant, right-continuous
locally finitely many jumps

matrix pairs (E1,A1), . . . , (EP,AP)

Ep,Ap ∈ Rn×n, p = 1, . . . , P
(Ep,Ap) regular, i.e. det(Eps − Ap) 6≡ 0

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Motivation and questions

Why switched DAEs Eσ ẋ = Aσx ?

1 modeling of electrical circuits with switches

2 DAEs Eẋ = Ax + Bu with switched feedback

u(t) = Fσ(t)x(t) or

u(t) = Fσ(t)x(t) + Gσ(t)ẋ(t)

3 approximation of time-varying DAEs E (t)ẋ = A(t)x via
piecewise-constant DAEs

Question

Ep ẋ = Apx asymp. stable ∀p ?⇒ Eσ ẋ = Aσx asymp. stable ∀σ

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Example 1: jumps and stability

Example 1a:

(E1,A1) =

([
0 0
0 1

]
,

[
1 −1
0 −1

])
(E2,A2) =

([
0 0
1 1

]
,

[
−1 0
0 −1

])
Example 1b:

(E1,A1) =

([
0 0
0 1

]
,

[
1 −1
0 −1

])
(E2,A2) =

([
0 0
0 1

]
,

[
1 0
0 −1

])

x1

x2

unsta
ble!!!

x1

x2

x1

x2

Remark: V (x) = x2
1 + x2

2 is Lyapunov function for all subsystem
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Example 2: impulses in solutions

−
+

Lu uL

iL

constant input:

inductivity law:

switch dependent: 0 = uL − u

−
+

Lu uL

iL

u̇ = 0

L d
dt iL = uL

0 = iL
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Example 2: impulses in solutions

−
+

Lu uL

iL

x = [u, iL, uL]>1 0 0
0 L 0
0 0 0

 ẋ =

 0 0 0
0 0 1
−1 0 1

 x

−
+

Lu uL

iL

1 0 0
0 L 0
0 0 0

 ẋ =

0 0 0
0 0 1
0 1 0

 x
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Solution of example

L d
dt iL = uL, 0 = uL − u or 0 = iL

u constant, iL(0) = 0

switch at ts > 0: σ(t) =

{
1, t < ts

2, t ≥ ts

t

uL(t)

ts
t

iL(t)

ts

u

δts
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Observations

Solutions

modes have constrained dynamics: consistency spaces

switches ⇒ inconsistent initial values

inconsistent initial values ⇒ jumps in x

Stability

common Lyapunov function not sufficient

stability depends on jumps

Impulses

switching ⇒ Dirac impulse in solution x

Dirac impulse = infinite peak ⇒ instability

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Solutions for unswitched DAEs
Consider Eẋ = Ax .

Theorem (Weierstrass 1868)

(E ,A) regular ⇔
∃S ,T ∈ Rn×n invertible:

(SET ,SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
,

N nilpotent, T = [V ,W ]

Corollary (for regular (E ,A))

x solves E ẋ = Ax ⇔

x(t) = VeJtv0

V ∈ Rn×n1 , J ∈ Rn1×n1 , v0 ∈ Rn1 .
Consistency space: C(E ,A) := imV

(E ,A) =
([

0 4 0
1 0 0
0 0 0

]
,
[−4π −4 0
−1 4π 0
−1 −4 4

])

x1

x2

x3

V =
[

0 4
1 0
1 1

]
, J =

[−1 −4π
π −1

]
Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Consistency projector

Observation [
I 0
0 N

](
v̇
ẇ

)
=

[
J 0
0 I

](
v
w

)
Consistent initial value:

(
v0

0

)
, because Nẇ = w ⇔ w ≡ 0

arbitrary initial value

(
v0

w0

)
Π7→
(
v0

0

)
consistent initial value

Definition (Consistency projector for regular (E ,A))

Let S ,T ∈ Rn×n be invertible with (SET ,SAT ) =
([

I 0
0 N

]
,
[
J 0
0 I

])
:

Π(E ,A) = T

[
I 0
0 0

]
T−1

Remark: Π(E ,A) can be calculated easily and directly from (E ,A) (via the
Wong sequences)

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Lyapunov functions for regular (E ,A)

Definition (Lyapunov function for Eẋ = Ax)

Q = Q
>
> 0 on C(E ,A) and P = P

>
> 0 solutions of

A>PE + E>PA = −Q (generalize Lyapunov equation)

Lyapunov function V : Rn → R≥0 : x 7→ (Ex)>PEx

V monotonically decreasing along solutions:

d
dtV

(
x(t)

)
=
(
Ex(t)

)>
PEẋ(t) +

(
Eẋ(t)

)>
PEx

= x(t)>E>PAx(t) + x(t)>A>PEx(t)

= −x(t)>Qx(t) < 0

Theorem (Owens & Debeljkovic 1985)

Eẋ = Ax asymptotically stable ⇔ ∃ Lyapunov function

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Distribution theory - basics

Distributions - overview

generalized functions

arbitrarily often differentiable

Dirac impulse δ0 is “derivative” of unit jump 1[0,∞)

Two different formal approaches

1 functional analytical: dual of the space test functions
(L. Schwartz 1950)

2 axiomatic: space of all “derivatives” of continuous functions
(J. Sebastião e Silva 1954)

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Dilemma

(swDAE) Eσ ẋ = Aσx

Problem

Multiplication of non smooth coefficients Eσ,Aσ with general distribution
x not defined!

switched DAEs

example: distributional
solutions

multiplication with non-smooth
coefficients

distributions

multiplication with non-smooth
coefficients not well-defined

initial value problems cannot be
formulated

Underlying problem

Space of distributions too big.

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Piecewise-smooth distributions

define a more suitable, smaller space:

Definition (Piecewise-smooth distributions DpwC∞)

DpwC∞ :=

 fD +
∑
t∈T

Dt

∣∣∣∣∣∣
f ∈ C∞pw,
T ⊆ R locally finite,

∀t ∈ T : Dt =
∑nt

i=0 a
t
i δ

(i)
t


fD

ti−1

Dti−1

ti

Dti

ti+1

Dti+1

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Properties of DpwC∞

multiplication with C∞pw-functions well defined (Fuchssteiner
multiplication)

left and right evaluation at t ∈ R possible: D(t−),D(t+)

impulse at t ∈ R: D[t]

(swDAE) Eσ ẋ = Aσx

Application to (swDAE)

x solves (swDAE) :⇔ x ∈ (DpwC∞)n and (swDAE) holds in DpwC∞

Theorem (Existence and uniqueness of solutions, T. 2009)

(Ep,Ap) regular ∀p ⇔ (swDAE) uniquelly solvable ∀σ ∀x(0) ∈ Rn

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Intermediate summary: problems and its solutions

(swDAE) Eσ ẋ = Aσx

1 stability criteria for single DAEs Ep ẋ = Apx
⇒ Lyapunov functions

2 no classical solutions
⇒ allow jumps in solutions

3 How does inconsistent initial value jump to consistent one?
⇒ Consistency projectors Π(E1,A1), . . . ,Π(EN ,AN )

4 differentiation of jumps
⇒ space of distributions as solution space

5 multiplication with non-smooth coefficients
⇒ space of piecewise-smooth distributions
⇒ existence and uniqueness of solutions

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Asymptotic stability and impulse free solutions

Definition (Asymptotic stability of switched DAE)

(swDAE) asymptotically stable
:⇔ x is impulse free∗ and x(t±)→ 0 for t →∞

∗ i.e. x[t] = 0 ∀t ∈ R; however jumps in x are still allowed

Let Πp := Π(Ep,Ap) be the consistency projector of (Ep,Ap)

Impulse freeness condition

(IFC): ∀p, q ∈ {1, . . . ,N} : Eq(I − Πq)Πp = 0

Theorem (T. 2009)

(IFC) ⇔ all solutions of Eσ ẋ = Aσx are impulse free ∀σ

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Stability for arbitrary switching

Consider (swDAE) with:

(∃Vp): ∀p ∈ {1, . . . , P} ∃ Lyapunov function Vp for (Ep,Ap)

i.e. each DAE Ep ẋ = Apx is asymptotically stable

Lyapunov jump condition

(LJC): ∀p, q = 1, . . . ,N ∀x ∈ C(Ep,Ap) : Vq(Πqx) ≤ Vp(x)

Theorem (Liberzon & T. 2009)

(IFC) ∧ (∃Vp) ∧ (LJC) ⇒ (swDAE) asymtotically stable ∀σ

Examples 1a and 1b fulfill (IFC) and (∃Vp),
but only 1b fulfills (LJC)

x1

x2

x1

x2

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Slow switching

Consider the set of switching signals with dwell time τ > 0:

Στ :=

 σ : R→ {1, . . . ,N}

∣∣∣∣∣∣∣
∀ switching times

ti ∈ R, i ∈ Z :

ti+1 − ti ≥ τ

 .

Theorem (Liberzon & T. 2009)

∃τ > 0: (IFC) ∧ (∃Vp) ⇒ (swDAE) asymptotically stable ∀σ ∈ Στ

Reminder:
(IFC): ∀p, q ∈ {1, . . . ,N} : Eq(I − Πq)Πp = 0

Examples 1a and 1b both fulfill (IFC) and (∃Vp)
⇒ both examples are asymptotically stable for slow switching

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Generalization to nonlinear switched DAEs

Previous results can be generalized to nonlinear switched DAEs:

Eσ(x)ẋ = fσ(x)

Then (IFC) has to be replaced by

∀p, q∈{1, . . . , P} ∀x−0 ∈Cp ∃ unique x+
0 ∈Cq : x+

0 − x−0 ∈ker Eq(x+
0 )

where Cp is the consistency manifold of Ep(x)ẋ = fp(x)

See our Automatica paper “Switched nonlinear differential algebraic
equations: Solution theory, Lyapunov functions, and stability” (2012)

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Commutativity and stability of switched ODEs

Theorem (Narendra and Balakrishnan 1994)

Consider switched ODE

(swODE) ẋ = Aσx

with Ap Hurwitz, p ∈ {1, 2, . . . , P} and commuting Ap, i.e.

[Ap,Aq] := ApAq − AqAp = 0 ∀p, q ∈ {1, 2, . . . , P} (C)

⇒ (swODE) asymptotically stable ∀σ.

Proof idea: Consider switching times t0 < t1 < . . . < tk < t and
pi := σ(ti+), then

x(t) = eApk
(t−tk )eApk−1

(tk−tk−1) · · · eAp1
(t2−t1)eAp0

(t1−t0)x0

(C)
= eA1∆t1eA2∆t2 · · · eAP∆tPx0

and ∆tp →∞ for at least one p and t →∞.
Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Generalization to (swDAE)

(swDAE) Eσ ẋ = Aσx

Generalization - Questions

Which matrices have to commute?

What about the jumps?

Example 1a:
(E1,A1) =

(
[ 0 1

0 0 ] ,
[

0 −1
1 −1

])
(E2,A2) =

(
[ 0 0

1 1 ] ,
[−1 0

0 −1

])
[A1,A2] = 0, but unstable for fast switching

x1

x2

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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The matrix Adiff

Let (E ,A) regular with (SET ,SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, N nilpotent

consistency projector: Π(E ,A) = T

[
I 0
0 0

]
T−1

Definition (differential “projector”)

Πdiff
(E ,A) = T

[
I 0
0 0

]
S

Lemma (Dynamics of DAE, Tanwani & T. 2010)

x solves E ẋ = Ax ⇒ ẋ = Πdiff
(E ,A)A︸ ︷︷ ︸
=:Adiff

x

Note: Adiff = T

[
J 0
0 0

]
T−1, hence [Adiff,Π(E ,A)] = 0

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Commutativity condition

(swDAE) Eσ ẋ = Aσx

Theorem (Liberzon, T., Wirth 2011)

(IFC) ∧ (∃Vp) ∧

[Adiff
p ,Adiff

q ] = 0 ∀p, q ∈ {1, 2, . . . , P} (C)

⇒ (swDAE) is asymptotically stable ∀σ.

(IFC) ∧ (∃Vp) ∧ (C) ⇒ ∃ common quadratic Lyapunov function with

V (Πpx) ≤ V (x) ∀x ∀p

Remarkable: No explicit condition on jumps!

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Proof idea

Proof idea:
[Adiff

p ,Adiff
q ] = 0 ∀p, q ∈ {1, 2, . . . , P} (C)

implies
[Πp,A

diff
q ] = 0 ∧ [Πp,Πq] = 0.

Consider switching times t0 < t1 < . . . < tk < t and pi := σ(ti+), then

x(t) = eA
diff
pk

(t−tk )Πpk e
Adiff
pk−1

(tk−tk−1)
Πpk−1

· · · eA
diff
p1

(t2−t1)Πp1e
Adiff
p0

(t1−t0)Πp0x0

(C)
= eA

diff
1 ∆t1 Π1 eA

diff
2 ∆t2 Π2 · · · eA

diff
P ∆tPΠPx0

and ∆tp →∞ for at least one p and t →∞.

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Evolution operator

x(t) = eA
diff
k (t−tk )Πke

Adiff
k−1(tk−tk−1)Πk−1 · · · eA

diff
1 (t2−t1)Π1e

Adiff
0 (t1−t0)Π0︸ ︷︷ ︸

=: Φσ(t, t0)

x(t0−)

Let M :=
{

(Adiff
p ,Πp) | corresponding to (Ep,Ap), p = 1, . . . , p

}
.

Definition (Set of all evolution matrices with fixed time span t > 0)

St := { Φσ(t, 0) | σ arbitrary switching signal }

=

{
k∏

i=0

eA
diff
i τi Πi

∣∣∣∣∣ (Adiff
i ,Πi ) ∈M,

k∑
i=0

τi = ∆t, τi > 0

}

Lemma (Semi group, T. & Wirth 2012)

The set S :=
⋃

t>0 St is a semi group with

Ss+t = SsSt := { ΦsΦt | Φs ∈ Ss ,Φt ∈ St }
Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Exponential growth bound

Definition (Exponential growth bound)

For t > 0 the exponential growth bound of Eσ ẋ = Aσx is

λt(St) := sup
Φt∈St

ln ‖Φt‖
t

∈ R ∪ {−∞,∞}

Definition implies for all solutions x of Eσ ẋ = Aσx :

‖x(t)‖ = ‖Φtx(0−)‖ ≤ ‖Φt‖ ‖x(0−)‖ ≤ eλt(St) t‖x(0−)‖

Difference to switched ODEs without jumps

λt(St) = ±∞ is possible!

All jumps are trivial, i.e. Πp = 0 ⇒ λt(St) = −∞
Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Infinite exponential growth bound

Example 1a revisited:

(E1,A1) =

([
0 0
0 1

]
,

[
1 −1
0 −1

])
(E2,A2) =

([
0 0
1 1

]
,

[
−1 0
0 −1

])

x1

x2

t

‖x‖

t

‖x‖

For small dwell times: Φt ≈ (Π1Π2)k =

[
1 1
1 1

]k
= 2k−1

[
1 1
1 1

]
Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Lyapunov exponent of a switched DAE

Theorem (Boundedness of St , T. & Wirth 2012)

St is bounded ⇔ the set of consistency projectors is product bounded

(swDAE) Eσ ẋ = Aσx

Theorem (Lyapunov exponent well defined, T. & Wirth 2012)

Let the consistency projectors be product bounded and not all be trivial,
then the (upper) Lyapunov exponent

λ(S) := lim
t→∞

λt(St) = lim
t→∞

sup
Φt∈St

ln ‖Φt‖
t

of (swDAE) is well defined and finite.

Note that: (swDAE) uniformly exponentially stable
:⇔ ∃M ≥ 1, µ > 0 : ‖x(t)‖ ≤ Me−µt‖x(0−)‖ ∀t ≥ 0
⇒ λ(S) ≤ −µ < 0

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Converse Lyapunov theorem for switched DAEs

For ε > 0 define “Lyapunov norm”

~x~ε := sup
t>0

sup
Φt∈St

e−(λ(S)+ε)t‖Φtx‖

(swDAE) Eσ ẋ = Aσx

Theorem (Converse Lyapunov theorem, T. & Wirth 2012)

(swDAE) is uniformly exponentially stable ∀σ
⇒ V = ~ · ~ε is Lyapunov function for sufficiently small ε > 0

In particular: V (Πx) ≤ V (x) for all consistency projectors Π

Non-smooth Lyapunov function

~ · ~ε in general non-smooth. Smoothification as in Yin, Sontag & Wang
1996 might violate jump condition!

Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern
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Summary

(swDAE) Eσ ẋ = Aσx

solution theory

no classical solutions: jumps and impulses
impulse freeness condition (IFC)
jumps are still allowed

stability conditions

multiple Lyapunov functions with jump condition (LJC)
slow switching
commutativity (quadratic Lyapunov function)
converse Lyapunov theorem
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