Observability of switched differential-algebraic equations for general switching signals

Aneel Tanwani* and Stephan Trenn**

\author{

* Team Bipop, research centre INRIA Rhône-Alpes, France
 ** Technomathematics group, University of Kaiserslautern, Germany
 51st IEEE Conference on Decision and Control Tuesday, December 11, 2012, 10:40-11:00, Maui, USA
}

Contents

(1) Introduction
(2) The single switch result
(3) Multiple switchings

Switched DAEs

DAE $=$ Differential algebraic equation

Switched linear DAE (swDAE)

$$
\begin{aligned}
E_{\sigma(t)} \dot{x}(t) & =A_{\sigma(t)} x(t)+B_{\sigma(t)} u(t) \\
y(t) & =C_{\sigma(t)} x(t)+D_{\sigma(t)} u(t)
\end{aligned} \text { or short } \quad \begin{aligned}
E_{\sigma} \dot{x} & =A_{\sigma} x+B_{\sigma} u \\
y & =C_{\sigma} x+D_{\sigma} u
\end{aligned}
$$

with

- known switching signal $\sigma: \mathbb{R} \rightarrow\{1,2, \ldots, \mathrm{p}\}=: \overline{\mathrm{p}}$
- piecewise constant
- locally finite jumps
- matrix tuples $\left(E_{1}, A_{1}, B_{1}, C_{1}, D_{1}\right), \ldots,\left(E_{\mathrm{p}}, A_{\mathrm{p}}, B_{\mathrm{p}}, C_{\mathrm{p}}, D_{\mathrm{p}}\right)$
- $E_{p}, A_{p} \in \mathbb{R}^{n \times n}, B_{p} \in \mathbb{R}^{n \times r}, C_{p} \in \mathbb{R}^{m \times n}, D_{p} \in \mathbb{R}^{m \times r}, p \in \overline{\mathrm{p}}$
- $\left(E_{p}, A_{p}\right)$ regular, i.e. $\operatorname{det}\left(E_{p} s-A_{p}\right) \not \equiv 0, p \in \overline{\mathrm{p}}$

Why switched DAEs?

- First principles models often contain differential and algebraic equations \rightarrow DAEs (instead of ODEs)
- Presence of switches (electrical circuits) or valves (water distribution networks) \rightarrow switched DAEs
- Component faults \rightarrow sudden changes in system description \rightarrow switched DAEs

Observability

Determine internal states without putting sensors everywhere

- Power grid: monitor power flows through lines
- Water distribution: monitor pressures in tubes
- Fault detection

Fundamental system property: Observability

Global Observability of Switched DAEs

Definition (Global observability)

The (swDAE) is (globally) observable : \Leftrightarrow
\forall solutions $\left(u_{1}, x_{1}, y_{1}\right),\left(u_{2}, x_{2}, y_{2}\right): \quad\left(u_{1}, y_{1}\right) \equiv\left(u_{2}, y_{2}\right) \Rightarrow x_{1} \equiv x_{2}$

Proposition (0-distinguishability)

The (swDAE) is observable if, and only if,

$$
y \equiv 0 \text { and } u \equiv 0 \quad \Rightarrow \quad x \equiv 0 .
$$

Hence consider in the following (swDAE) without inputs:

$$
\begin{aligned}
E_{\sigma} \dot{x} & =A_{\sigma} x \\
y & =C_{\sigma} x
\end{aligned}
$$

and observability question:

$$
y \equiv 0 \stackrel{?}{\Rightarrow} x \equiv 0
$$

Contents

(2) The single switch result
(3) Multiple switchings

The single switch result

Theorem (Unobservable subspace, Tanwani \& T. 2010)

For (swDAE) with a single switch the following equivalence holds

$$
x(0-) \in \mathcal{M} \quad \Leftrightarrow \quad y \equiv 0
$$

where

$$
\mathcal{M}:=\mathfrak{C}_{-} \cap \operatorname{ker} O_{-} \cap \operatorname{ker} O_{+}^{-} \cap \operatorname{ker} O_{+}^{\text {imp- }}
$$

Note that: $x(0-)=0 \Leftrightarrow x \equiv 0$
What are these four subspace?

The four subspaces

Unobservable subspace: $\mathcal{M}:=\mathfrak{C}_{-} \cap \operatorname{ker} O_{-} \cap \operatorname{ker} O_{+}^{-} \cap \operatorname{ker} O_{+}^{\text {imp- }}$, i.e.

$$
x(0-) \in \mathcal{M} \Leftrightarrow y_{(-\infty, 0)} \equiv 0 \wedge y[0]=0 \wedge y_{(0, \infty)} \equiv 0
$$

The four spaces

- Consistency: $x(0-) \in \mathfrak{C}_{-}$
- Left unobservability: $y_{(-\infty, 0)} \equiv 0 \Leftrightarrow x(0-) \in \operatorname{ker} O_{-}$
- Right unobservability: $y_{(0, \infty)} \equiv 0 \Leftrightarrow x(0-) \in \operatorname{ker} O_{+}^{-}$
- Impulse unobervability: $y[0]=0 \Leftrightarrow x(0-) \in \operatorname{ker} O_{+}^{\text {imp- }}$

These subspaces can be calculated (e.g. via the Wong sequences)

Multiple switchings

For convenience let $\sigma(t)= \begin{cases}-1, & \text { for } t<t_{0}=0, \\ k, & \text { for } t \in\left[t_{k}, t_{k+1}\right)\end{cases}$
Let \mathcal{M}_{k} be the (local) unobservable subspace at k-th switch

$\overrightarrow{\left(E_{-1}, A_{-1}, C_{-1}\right)} t_{0} \quad\left(E_{0}, A_{0}, C_{0}\right) \quad t_{1} \quad\left(E_{1}, A_{1}, C_{1}\right) \quad t_{2} \quad\left(E_{2}, A_{2}, C_{2}\right)$

Non-Necessity and Non-Sufficiency

$\mathcal{M}_{k}=\{0\}$ for some k not necessary for global observability! $\mathcal{M}_{k}=\{0\}$ for some $k>0$ not sufficient for global observability!

Flow between switches

Characterization of observability

Need to consider the dynamics between the switches!

Theorem (Solution characterization)

Consider fixed mode k given by $E_{k} \dot{x}=A_{k} x$ with regular matrix pair $\left(E_{k}, A_{k}\right) \Rightarrow \exists$ consistency projector $\Pi_{k} \exists$ flow matrix $A_{k}^{\text {diff }}$:

$$
x(t)=e^{A_{k}^{\text {diff }}\left(t-t_{k}\right)} \Pi_{k} x\left(t_{k}-\right) \in \mathfrak{C}_{k} \quad t \in\left[t_{k}, t_{k+1}\right) .
$$

Application to unobservable spaces

Assume $y \equiv 0 \Rightarrow x\left(t_{k}-\right) \in \mathcal{M}_{k} \forall k \in \mathbb{N}$

Backpropagation of knowledge

Use unobservable spaces from later switches to get information on earlier switches. One step:

$$
\begin{aligned}
x\left(t_{k+1}-\right) \in \mathcal{M}_{k+1} & \Rightarrow x\left(t_{k}+\right) \in e^{-A_{k}^{\text {diff }} \Delta_{k}} \mathcal{M}_{k+1} \\
& \Rightarrow x\left(t_{k}-\right) \in \Pi_{k}^{-1}\left(e^{-A_{k}^{\text {diff }} \Delta_{k}} \mathcal{M}_{k+1}\right)
\end{aligned}
$$

Hence improved knowledge for $x\left(t_{k}-\right)$:

$$
x\left(t_{k}-\right) \in \mathcal{M}_{k} \cap \Pi_{k}^{-1}\left(e^{-A_{k}^{\text {difif }} \Delta_{k}} \mathcal{M}_{k+1}\right)
$$

$\Delta_{k}:=t_{k+1}-t_{k}$

Main result

Consider switched DAE (swDAE) $\quad E_{\sigma} \dot{x}=A_{\sigma} x$
with fixed σ, switching times t_{k}, interval length Δ_{k}, corresponding consistency projectors Π_{k} and flow matrices $A_{k}^{\text {diff }}$.

Definition (Unobservable spaces of m-th order)

For $m \in \mathbb{N}$ let

$$
\begin{aligned}
& \mathcal{N}_{m}^{m}:=\mathcal{M}_{m} \\
& \mathcal{N}_{k}^{m}:=\mathcal{M}_{k} \cap \Pi_{k}^{-1}\left(e^{-A_{k}^{\text {diff }} \Delta_{k}} \mathcal{N}_{k+1}^{m}\right), k=m-1, \ldots, 0
\end{aligned}
$$

Theorem (Main result)

(swDAE) is observable $\Leftrightarrow \exists m \in \mathbb{N}: \quad \mathcal{N}_{0}^{m}=\{0\}$

Illustration of this result

Drawbacks

- Exact knowledge of switching signals necessary
- New switching \rightarrow completely new calculation necessary

Improvements

Invariant subspaces

With the help of $A^{\text {diff-invariant subspaces, obtain }}$

- necessary condition for observability
- sufficient condition for observability
depending only on the mode sequence (and not on the switching times)

Determinability

(swDAE) determinable : $\Leftrightarrow x_{[T, \infty)}$ can be determined for some $T>0$ $\Leftrightarrow \quad \exists m \in \mathbb{N}: \mathcal{Q}^{m}=\{0\}$, where

$$
\begin{aligned}
\mathcal{Q}^{0} & :=\Pi_{0} \mathcal{M}_{0} \\
\mathcal{Q}^{k+1} & :=\Pi_{k+1}\left(\mathcal{M}_{k+1} \cap e^{d_{k}^{\text {diff }} \Delta_{k}} \mathcal{Q}^{k}\right), \\
e^{A_{0}^{\text {dif }} \Delta_{0}}, \mathcal{M}_{1}, \Pi_{1} \quad e^{A_{1}^{\text {diff }} \Delta_{1}}, \mathcal{M}_{2}, \Pi_{2} & e^{d_{2}^{\text {diff }} \Delta_{2}}, \mathcal{M}_{3}, \Pi_{3}
\end{aligned}
$$

Conclusions

- Considered switched DAEs

$$
\begin{aligned}
E_{\sigma} \dot{x} & =A_{\sigma} x+B_{\sigma} u \\
y & =C_{\sigma} x+D_{\sigma} u
\end{aligned}
$$

- local unobservable subspaces (single switch result)

$$
\mathcal{M}_{k}=\mathfrak{C}_{k-1} \cap \operatorname{ker} O_{k-1} \cap \operatorname{ker} O_{k}^{-} \cap \operatorname{ker} O_{k}^{\text {imp }-}
$$

- Characterization of global observability
- Sufficient and necessary conditions for observability only depending on mode sequence
- Determinability characterization \rightarrow more suitable for observer design (future work)

