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Introduction
L]

Switched DAEs

Linear switched DAE (differential algebraic equation)

(swDAE) ’ Eo(pyx(t) = Age)x(t) ‘ or short | E,x = Axx

with
@ switching signal o : R — {1,2,...,P}

e piecewise constant, right-continuous

o locally finitely many jumps (no Zeno behavior)

e matrix pairs (E1, A1), ..., (Ep, Ap)
o E,,ApeR™", p=1,...,P
o (Ep, Ap) regular, i.e. det(Eys — Apy) 0
e impulse-free solutions (but jumps are allowed!)

Growth rate and extremal norms for E,x = A,x Vo
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Solution formula

Sy

Theorem (A% and M, Tanwani & T. 2010)
Let (E,A) be regular and consider

Ex = Ax on [0,00)

= 3 unique consistency projector I and unique flow matrix A9

x(0) = Mx(0-) x = A%x| on (0,00)

Furthermore, A9 = A9,

Corollary (Solution formula for switched DAE)
Any solution of the switched DAE E,x = A,x has the form

diff. diff diff diff.
x(t) = M =t A bty L AT (i) Ao (B to) [ (15— )
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O@000000

Switched ODEs with jumps /

Corollary

x solves E,x = A,x on [0,00) < x solves switched ODE with jumps

X = Aif_fFX on [t,'7 f,'+1)
X(t,') = I'I,,,.x(t,-—), ieN

where 0 = tg, t1, ..., are the switching times of o and 0|[t‘ = p;

3ti+1)

Impulse freeness assumption

Above solution characterization only valid when switched DAE produces
no Dirac impulses in x.

Theorem (Impulse freeness characterization, T. 2009)

E,x = A,x has only impulse free solutions Vo <

Vp,ge {1,...,P}: E4 (I =My, =0
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Evolution operator and its semigroup
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Evolution operator
Consider in the following switched ODE with jumps

X = Ajx on [t,', t,‘+1)
X(t,'): ﬂ,‘X(t,'—), ieN

where 0 =tp < t; < th < ... and
(A,N)eMC{(AN) | AN=NA N=0N*} compact

Solutions:
X(t) = eAk(t_tk)nkeAkfl(tk_tkfl)|_|k71 cee eAl(tQ_tl)I'IleAO(t _tO)I'on(to—)

Definition (Set of all evolutions with fixed time span t > 0)

k

k
S HeA’T"I'I,- (A;, ;) e M, ZTi:t, 7> 0,7 >0
i=0 i=0
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Evolution operator and its semigroup
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Semi group property

Lemma (Semi group)

The set
S:=Js:

t>0

is a semi group with
Ss+t = SSSt = { cbsq)t | ¢5 & 85, d)t € St }

Need commutativity to show “C":
!

NV AN ’
eA‘rl—I _ eA(T—T ) eAT nn = eA(T—T )I—IeAT M

forany (A, e Mand0< 7' <7
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Exponential growth bound
Definition (Exponential growth bound)
For t > 0 the exponential growth bound of E,x = A,x is

In||®
AlEh) o= ¢Slé[3s In [ € RU{—o0,00}

Definition implies for all solutions x of E,x = A,x:
IX()]] = [[®ex(0=) | < el x(0=)|| < e(5)¢[x(0-)

Difference to switched ODEs without jumps

Ae(St) = £o0 is possible!

= At(St) = —
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Infinite exponential growth bound
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Example:
0 0of |1 -1 0 0] |-1 O
N I N )
X2 [l
S
R
4+ | R
X1 t t

1 1) 11
For small dwell times: ®, ~ (M;My)* = L 1} = 2k-1 [1 J
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Existence of exponential growth rate

Theorem (Boundedness of S;)

S; Iis bounded < the set of jump projectors is product bounded

Reminder:

K K
S; :—{ HeA"T"I'I,- (A;, 1) e M, ZT,':At, 77>0, >0 }
i=0 i=0

Theorem (Exponential growth rate well defined)

Let the jump projectors be product bounded and not all be trivial, then

the (upper) Lyapunov exponent

A(S) = I|m Ae(St) = lim sup 1@l

t—o0 eS8,

of the semi-group S is well defined and finite.
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Connection to the generalized spectral radius

Oberservation: x solves switched ODE <
x(t+1)e{Px(t) | S}

Definition (Generalized spectral radius)

For k € N define the discrete growth rate
pi(S1) == sup [|[@kPr_ - Dy|/K.
[OHEES
The generalized spectral radius is
p(S1) = lim py(S1).
k— o0

Clearly, In pi(S1) = suppes, ™2l = X, (Sk) and therefore

(A(S) = Inp(S1)]
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Converse Lyapunov theorem and Barabanov norm
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Converse Lyapunov theorem for switched DAEs /

Consider again
E % = Ayx (swDAE)
with corresponding semigroup S;.
(swDAE) uniformly exponentially stable
= AM>1,u>0:||x(b)] < Me #t|x(0-)|| Vt>0
= AS)<—u<O.

Definition (Lyapunov norm)

For e > 0 define

lixlls := sup sup e~ )]0 x|

t>0 ¢.e5;

Theorem (Converse Lyapunov theorem, T. & Wirth 2012)

(swDAE) is uniformly exponentially stable Vo
= V = || - ||z is Lyapunov function for sufficiently small € > 0

In particular: V/(INx) < V(x) for all projectors I
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Barabanov norm /

Definition (Barabanov norm)

I - ||l is called Barabanov norm for S, iff
Q [[®X0f| < eM[IX°fl, ;€ S:
Q@ VX" eR" 3D, €S, : || Dexoll = e|x0ll

In particular, ever Barabanov norm with A < 0 defines a Lyapunov

function

Theorem (Existence of Barabanov norm)
Assume S is irreducible, i.e. SM C M implies M = () or M = R".
Then the following are equivalent:

@ The consistency projectors are product bounded

@ The Lyapunov exponent \(S) is bounded

@ There exists a Barabanov norm with A = \(S)
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Construction of Barabanov norm

Construction of Barabanov norm similar as in (Wirth 2002, LAA):

S i=[) J e 1S,

T>0t>T
is a compact nontrivial semigroup, the limit semigroup.
x| == max{ [[Sx|| [ S € Suc }

is the sought Barabanov norm.
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Conclusions

Sy

Studied switched DAEs E,x = A, x

Key observation:

x(t) = eAiw(t*fk)nk ..eA(f‘ﬁ(fzftl)nleAg"“(fl*fO)nox(tO,)

o Flow set
k k
diff_. .
S, = HeA,. 7if; (A?Iff’ ﬂ,) EM, ZTI- =At, >0
i=0 i=0
@ Product boudedness of consistency projectors necessary and

sufficient for boundedness of S;

@ Converse Lyapunov theorem
@ Construction of Barabanov norm in irreducible case
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