Stability of switched DAEs

Stephan Trenn (joint work with Daniel Liberzon)

Technomathematics group, Dept. of Mathematics, University of Kaiserslautern

Workshop Architecture Hybride et Contraintes, Paris June 4th 2012, 14:00

Contents

(1) Introduction

- Systems class: definition and motivation
- Examples
(2) Nonswitched DAEs
- Solutions: Consistency and underlying ODE
- Lyapunov functions

3 Distributional solutions for switched DAEs

- Reminder: classical distribution theory
- Piecewise-smooth distributions

4 Stability results

- Impulse freeness
- Arbitrary switching
- Slow switching
- Commutativity
- Lyapunov exponent and converse Lyapunov theorem

Switched DAEs

Switched linear DAE (differential algebraic equation)

(swDAE) $\quad E_{\sigma(t)} \dot{x}(t)=A_{\sigma(t)} x(t) \quad$ or short $\quad E_{\sigma} \dot{x}=A_{\sigma} x$
with

- switching signal $\sigma: \mathbb{R} \rightarrow\{1,2, \ldots, \mathrm{P}\}$
- piecewise constant, right-continuous
- locally finitely many jumps
- matrix pairs $\left(E_{1}, A_{1}\right), \ldots,\left(E_{\mathrm{P}}, A_{\mathrm{P}}\right)$
- $E_{p}, A_{p} \in \mathbb{R}^{n \times n}, p=1, \ldots, \mathrm{P}$
- $\left(E_{p}, A_{p}\right)$ regular, i.e. $\operatorname{det}\left(E_{p} s-A_{p}\right) \not \equiv 0$

Motivation and questions

Why switched DAEs $E_{\sigma} \dot{x}=A_{\sigma} x$?
(1) modeling of electrical circuits with switches
(2) DAEs $E \dot{x}=A x+B u$ with switched feedback

$$
\begin{aligned}
& u(t)=F_{\sigma(t)} x(t) \quad \text { or } \\
& u(t)=F_{\sigma(t)} x(t)+G_{\sigma(t)} \dot{x}(t)
\end{aligned}
$$

(3) approximation of time-varying DAEs $E(t) \dot{x}=A(t) x$ via piecewise-constant DAEs

Question

$E_{p} \dot{x}=A_{p} x$ asymp. stable $\forall p \stackrel{?}{\Rightarrow} E_{\sigma} \dot{x}=A_{\sigma} x$ asymp. stable $\forall \sigma$

Example 1: jumps and stability

Example 1a:

$$
\left(E_{1}, A_{1}\right)=\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right]\right)
$$

$$
\left(E_{2}, A_{2}\right)=\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right)
$$

$$
x_{2}
$$

x_{2}

$$
\left(E_{1}, A_{1}\right)=\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right]\right)
$$

$$
\left(E_{2}, A_{2}\right)=\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\right)
$$

X_{2}

Remark: $V(x)=x_{1}^{2}+x_{2}^{2}$ is Lyapunov function for all subsystem

Example 2: impulses in solutions

constant input:

$$
\begin{aligned}
\dot{u} & =0 \\
L \frac{\mathrm{~d}}{\mathrm{dt}} i_{L} & =u_{L}
\end{aligned}
$$

switch dependent:

$$
0=u_{L}-u
$$

$$
0=i_{L}
$$

Example 2: impulses in solutions

$$
\begin{gathered}
x=\left[u, i_{L}, u_{L}\right]^{\top} \\
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & L & 0 \\
0 & 0 & 0
\end{array}\right] \dot{x}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
-1 & 0 & 1
\end{array}\right] x \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & L & 0 \\
0 & 0 & 0
\end{array}\right] \dot{x}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] x}
\end{gathered}
$$

Solution of example

$L \frac{\mathrm{~d}}{\mathrm{~d} t} i_{L}=u_{L}, \quad 0=u_{L}-u \quad$ or $\quad 0=i_{L}$
u constant, $\quad i_{L}(0)=0$
switch at $t_{s}>0: \sigma(t)= \begin{cases}1, & t<t_{s} \\ 2, & t \geq t_{s}\end{cases}$
$u_{L}(t)$

$$
i_{L}(t)
$$

Observations

Solutions

- modes have constrained dynamics: consistency spaces
- switches \Rightarrow inconsistent initial values
- inconsistent initial values \Rightarrow jumps in x

Stability

- common Lyapunov function not sufficient
- stability depends on jumps

Impulses

- switching \Rightarrow Dirac impulse in solution x
- Dirac impulse $=$ infinite peak \Rightarrow instability

Contents

(1) Introduction

- Systems class: definition and motivation
- Examples
(2) Nonswitched DAEs
- Solutions: Consistency and underlying ODE
- Lyapunov functions
(3) Distributional solutions for switched DAEs
- Reminder: classical distribution theory
- Piecewise-smooth distributions
(4) Stability results
- Impulse freeness
- Arbitrary switching
- Slow switching
- Commutativity
- Lyapunov exponent and converse Lyapunov theorem

Solutions for unswitched DAEs

Consider $E \dot{x}=A x$.

Theorem (Weierstrass 1868)

(E, A) regular \Leftrightarrow
$\exists S, T \in \mathbb{R}^{n \times n}$ invertible:
$(S E T, S A T)=\left(\left[\begin{array}{ll}1 & 0 \\ 0 & N\end{array}\right],\left[\begin{array}{ll}J & 0 \\ 0 & 1\end{array}\right]\right)$,
N nilpotent, $T=[V, W]$

Corollary (for regular (E, A))

x solves $E \dot{x}=A x \Leftrightarrow$

$$
x(t)=V e^{J t} v_{0}
$$

$V \in \mathbb{R}^{n \times n_{1}}, J \in \mathbb{R}^{n_{1} \times n_{1}}, v_{0} \in \mathbb{R}^{n_{1}}$.
Consistency space: $\mathfrak{C}_{(E, A)}:=\mathrm{im} V$
$(E, A)=\left(\left[\begin{array}{lll}0 & 4 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}-4 \pi & -4 & 0 \\ -1 & 4 \pi & 0 \\ -1 & -4 & 4\end{array}\right]\right)$

$$
V=\left[\begin{array}{ll}
0 & 4 \\
1 & 0 \\
1 & 1
\end{array}\right], J=\left[\begin{array}{cc}
-1 & -4 \pi \\
\pi & -1
\end{array}\right]
$$

Consistency projector

Observation

$$
\left[\begin{array}{ll}
l & 0 \\
0 & N
\end{array}\right]\binom{\dot{v}}{\dot{w}}=\left[\begin{array}{ll}
J & 0 \\
0 & l
\end{array}\right]\binom{v}{w}
$$

Consistent initial value: $\binom{v_{0}}{0}$, because $N \dot{w}=w \Leftrightarrow w \equiv 0$ arbitrary initial value $\binom{v_{0}}{w_{0}} \stackrel{\Pi}{\mapsto}\binom{v_{0}}{0}$ consistent initial value

Definition (Consistency projector for regular (E, A))

Let $S, T \in \mathbb{R}^{n \times n}$ be invertible with $(S E T, S A T)=\left(\left[\begin{array}{ll}1 & 0 \\ 0 & N\end{array}\right],\left[\begin{array}{ll}J & 0 \\ 0 & 1\end{array}\right]\right)$:

$$
\Pi_{(E, A)}=T\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right] T^{-1}
$$

Remark: $\Pi_{(E, A)}$ can be calculated easily and directly from (E, A) (via the Wong sequences)

Lyapunov functions for regular (E, A)

Definition (Lyapunov function for $E \dot{x}=A x$)

$Q=\bar{Q}^{\top}>0$ on $\mathfrak{C}_{(E, A)}$ and $P=\bar{P}^{\top}>0$ solutions of

$$
A^{\top} P E+E^{\top} P A=-Q \quad \text { (generalize Lyapunov equation) }
$$

Lyapunov function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}: x \mapsto(E x)^{\top} P E x$
V monotonically decreasing along solutions:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} V(x(t)) & =(E x(t))^{\top} P E \dot{x}(t)+(E \dot{x}(t))^{\top} P E x \\
& =x(t)^{\top} E^{\top} P A x(t)+x(t)^{\top} A^{\top} P E x(t) \\
& =-x(t)^{\top} Q x(t)<0
\end{aligned}
$$

Theorem (Owens \& Debeljkovic 1985)

$E \dot{x}=A x$ asymptotically stable $\Leftrightarrow \exists$ Lyapunov function

Contents

(1) Introduction

- Systems class: definition and motivation
- Examples
(2) Nonswitched DAEs
- Solutions: Consistency and underlying ODE
- Lyapunov functions

3 Distributional solutions for switched DAEs

- Reminder: classical distribution theory
- Piecewise-smooth distributions
(4) Stability results
- Impulse freeness
- Arbitrary switching
- Slow switching
- Commutativity
- Lyapunov exponent and converse Lyapunov theorem

Distribution theory - basics

Distributions - overview

- generalized functions
- arbitrarily often differentiable
- Dirac impulse δ_{0} is "derivative" of unit jump $\mathbb{1}_{[0, \infty)}$

Two different formal approaches
(1) functional analytical: dual of the space test functions (L. Schwartz 1950)
(2) axiomatic: space of all "derivatives" of continuous functions (J. Sebastião e Silva 1954)

Dilemma

(swDAE) $E_{\sigma} \dot{x}=A_{\sigma} x$

Problem

Multiplication of non smooth coefficients E_{σ}, A_{σ} with general distribution x not defined!

switched DAEs

- example: distributional solutions
- multiplication with non-smooth coefficients
distributions
- multiplication with non-smooth coefficients not well-defined
- initial value problems cannot be formulated

Underlying problem

Space of distributions too big.

Piecewise-smooth distributions

define a more suitable, smaller space:

Definition (Piecewise-smooth distributions $\mathbb{D}_{\mathrm{pw}} \mathcal{C}^{\infty}$)

$$
\mathbb{D}_{\mathrm{pwC}} \infty:=\left\{\begin{array}{l|l}
f_{\mathbb{D}}+\sum_{t \in T} D_{t} & \begin{array}{l}
f \in \mathcal{C}_{\mathrm{pw}}^{\infty}, \\
T \subseteq \mathbb{R} \text { locally finite }, \\
\forall t \in T: D_{t}=\sum_{i=0}^{n_{t}} a_{i}^{t} \delta_{t}^{(i)}
\end{array}
\end{array}\right\}
$$

Properties of $\mathbb{D}_{\mathrm{pwC}}{ }^{\infty}$

- multiplication with $\mathcal{C}_{\mathrm{pw}}^{\infty}$-functions well defined (Fuchssteiner multiplication)
- left und right evaluation at $t \in \mathbb{R}$ possible: $D(t-), D(t+)$
- impulse at $t \in \mathbb{R}: D[t]$

$$
\text { (swDAE) } \quad E_{\sigma} \dot{x}=A_{\sigma} x
$$

Application to (swDAE)

x solves (swDAE) $\quad: \Leftrightarrow \quad x \in\left(\mathbb{D}_{\mathrm{pw}} \mathcal{C}^{\infty}\right)^{n}$ and (swDAE) holds in $\mathbb{D}_{\mathrm{pw}}{ }^{\infty}$

Theorem (Existence and uniqueness of solutions, T. 2009)

$\left(E_{p}, A_{p}\right)$ regular $\forall p \Leftrightarrow$ (swDAE) uniquelly solvable $\forall \sigma \forall x(0) \in \mathbb{R}^{n}$

Intermediate summary: problems and its solutions

$$
\text { (swDAE) } \quad E_{\sigma} \dot{x}=A_{\sigma} x
$$

(1) stability criteria for single DAEs $E_{p} \dot{x}=A_{p} x$
\Rightarrow Lyapunov functions
(2) no classical solutions
\Rightarrow allow jumps in solutions
(3) How does inconsistent initial value jump to consistent one?
\Rightarrow Consistency projectors $\Pi_{\left(E_{1}, A_{1}\right)}, \ldots, \Pi_{\left(E_{N}, A_{N}\right)}$
(1) differentiation of jumps
\Rightarrow space of distributions as solution space
(0) multiplication with non-smooth coefficients
\Rightarrow space of piecewise-smooth distributions
\Rightarrow existence and uniqueness of solutions

Contents

(1) Introduction

- Systems class: definition and motivation
- Examples
(2) Nonswitched DAEs
- Solutions: Consistency and underlying ODE
- Lyapunov functions
(3) Distributional solutions for switched DAEs
- Reminder: classical distribution theory
- Piecewise-smooth distributions

4 Stability results

- Impulse freeness
- Arbitrary switching
- Slow switching
- Commutativity
- Lyapunov exponent and converse Lyapunov theorem

Asymptotic stability and impulse free solutions

Definition (Asymptotic stability of switched DAE)

(swDAE) asymptotically stable
$: \Leftrightarrow x$ is impulse free* and $x(t \pm) \rightarrow 0$ for $t \rightarrow \infty$

* i.e. $x[t]=0 \forall t \in \mathbb{R}$; however jumps in x are still allowed

Let $\Pi_{p}:=\Pi_{\left(E_{p}, A_{p}\right)}$ be the consistency projector of $\left(E_{p}, A_{p}\right)$

Impulse freeness condition

(IFC): $\forall p, q \in\{1, \ldots, N\}: \quad E_{q}\left(I-\Pi_{q}\right) \Pi_{p}=0$

Theorem (T. 2009)

(IFC) \Leftrightarrow all solutions of $E_{\sigma} \dot{x}=A_{\sigma} \times$ are impulse free $\forall \sigma$

Stability for arbitrary switching

Consider (swDAE) with:
$\left(\exists \mathbf{V}_{\mathbf{p}}\right): \quad \forall p \in\{1, \ldots, \mathrm{P}\} \exists$ Lyapunov function V_{p} for $\left(E_{p}, A_{p}\right)$
i.e. each DAE $E_{p} \dot{x}=A_{p} x$ is asymptotically stable

Lyapunov jump condition

(LJC): $\forall p, q=1, \ldots, N \forall x \in \mathfrak{C}_{\left(E_{p}, A_{p}\right)}: \quad V_{q}\left(\Pi_{q} x\right) \leq V_{p}(x)$

Theorem (Liberzon \& T. 2009)

$($ IFC $) \wedge\left(\exists \mathbf{V}_{\mathrm{p}}\right) \wedge(\mathrm{LJC}) \Rightarrow($ swDAE $)$ asymtotically stable $\forall \sigma$

Examples 1a and 1b fulfill (IFC) and ($\exists \mathbf{V}_{\mathbf{p}}$), but only 1b fulfills (LJC)

Slow switching

Consider the set of switching signals with dwell time $\tau>0$:

$$
\Sigma^{\tau}:=\left\{\begin{array}{l|l}
\sigma: \mathbb{R} \rightarrow\{1, \ldots, N\} & \begin{array}{l}
\forall \text { switching times } \\
t_{i} \in \mathbb{R}, i \in \mathbb{Z}: \\
t_{i+1}-t_{i} \geq \tau
\end{array}
\end{array}\right\} .
$$

Theorem (Liberzon \& T. 2009)
 $\exists \tau>0$: (IFC) $\wedge\left(\exists \mathbf{V}_{\mathrm{p}}\right) \Rightarrow(\mathbf{s w D A E})$ asymptotically stable $\forall \sigma \in \Sigma^{\tau}$

Reminder:
(IFC): $\forall p, q \in\{1, \ldots, N\}: \quad E_{q}\left(I-\Pi_{q}\right) \Pi_{p}=0$
Examples 1a and 1b both fulfill (IFC) and ($\exists \mathbf{V}_{\mathbf{p}}$)
\Rightarrow both examples are asymptotically stable for slow switching

Generalization to nonlinear switched DAEs

Previous results can be generalized to nonlinear switched DAEs:

$$
E_{\sigma}(x) \dot{x}=f_{\sigma}(x)
$$

Then (IFC) has to be replaced by

$$
\forall p, q \in\{1, \ldots, \mathrm{P}\} \forall x_{0}^{-} \in \mathfrak{C}_{p} \exists \text { unique } x_{0}^{+} \in \mathfrak{C}_{q}: x_{0}^{+}-x_{0}^{-} \in \operatorname{ker} E_{q}\left(x_{0}^{+}\right)
$$

where \mathfrak{C}_{p} is the consistency manifold of $E_{p}(x) \dot{x}=f_{p}(x)$

See our recent Automatica paper "Switched nonlinear differential algebraic equations: Solution theory, Lyapunov functions, and stability"

Contents

(1) Introduction

- Systems class: definition and motivation
- Examples
(2) Nonswitched DAEs
- Solutions: Consistency and underlying ODE
- Lyapunov functions
(3) Distributional solutions for switched DAEs
- Reminder: classical distribution theory
- Piecewise-smooth distributions

4 Stability results

- Impulse freeness
- Arbitrary switching
- Slow switching
- Commutativity
- Lyapunov exponent and converse Lyapunov theorem

Commutativity and stability of switched ODEs

Theorem (Narendra and Balakrishnan 1994)

Consider switched ODE
(swODE) $\quad \dot{x}=A_{\sigma} x$
with A_{p} Hurwitz, $p \in\{1,2, \ldots, \mathrm{P}\}$ and commuting A_{p}, i.e.

$$
\begin{equation*}
\left[A_{p}, A_{q}\right]:=A_{p} A_{q}-A_{q} A_{p}=0 \quad \forall p, q \in\{1,2, \ldots, \mathrm{P}\} \tag{C}
\end{equation*}
$$

\Rightarrow (swODE) asymptotically stable $\forall \sigma$.
Proof idea: Consider switching times $t_{0}<t_{1}<\ldots<t_{k}<t$ and $p_{i}:=\sigma\left(t_{i}+\right)$, then

$$
\begin{aligned}
x(t) & =e^{A_{p_{k}}\left(t-t_{k}\right)} e^{A_{p_{k-1}}\left(t_{k}-t_{k-1}\right)} \cdots e^{A_{p_{1}}\left(t_{2}-t_{1}\right)} e^{A_{p_{0}}\left(t_{1}-t_{0}\right)} x_{0} \\
& \stackrel{(C)}{=} e^{A_{1} \Delta t_{1}} e^{A_{2} \Delta t_{2}} \cdots e^{A_{\mathrm{p}} \Delta t_{\mathrm{p}}} x_{0}
\end{aligned}
$$

and $\Delta t_{p} \rightarrow \infty$ for at least one p and $t \rightarrow \infty$.

Generalization to (swDAE)

(swDAE)

$$
E_{\sigma} \dot{x}=A_{\sigma} x
$$

Generalization - Questions

- Which matrices have to commute?
- What about the jumps?

$$
\begin{array}{ll}
\text { Example 1a: } & \left(E_{1}, A_{1}\right)=\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right]\right) \\
& \left(E_{2}, A_{2}\right)=\left(\left[\begin{array}{ccc}
0 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right)
\end{array}
$$

$\left[A_{1}, A_{2}\right]=0$, but unstable for fast switching

The matrix $A^{\text {diff }}$

Let (E, A) regular with $(S E T, S A T)=\left(\left[\begin{array}{ll}1 & 0 \\ 0 & N\end{array}\right],\left[\begin{array}{ll}J & 0 \\ 0 & 1\end{array}\right]\right), N$ nilpotent
consistency projector: $\Pi_{(E, A)}=T\left[\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right] T^{-1}$

Definition (differential "projector")

$$
\Pi_{(E, A)}^{\text {diff }}=T\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right] S
$$

Lemma (Dynamics of DAE, Tanwani \& T. 2010)

x solves $E \dot{x}=A x \Rightarrow \dot{x}=\underbrace{\prod_{(E, A)}^{\text {diff }} A}_{=: A^{\text {diff }}} x$
Note: $A^{\text {diff }}=T\left[\begin{array}{ll}J & 0 \\ 0 & 0\end{array}\right] T^{-1}$, hence $\left[A^{\text {diff }}, \Pi_{(E, A)}\right]=0$

Commutativity condition

$$
\text { (swDAE) } \quad E_{\sigma} \dot{x}=A_{\sigma} x
$$

Theorem (Liberzon, T., Wirth 2011)

$(I F C) \wedge\left(\exists V_{p}\right) \wedge$

$$
\begin{equation*}
\left[A_{p}^{\text {diff }}, A_{q}^{\text {diff }}\right]=0 \quad \forall p, q \in\{1,2, \ldots, \mathrm{P}\} \tag{C}
\end{equation*}
$$

\Rightarrow (swDAE) is asymptotically stable $\forall \sigma$.
$(\operatorname{IFC}) \wedge\left(\exists \mathbf{V}_{\mathbf{p}}\right) \wedge(\mathrm{C}) \Rightarrow \exists$ common quadratic Lyapunov function with

$$
V\left(\Pi_{p} x\right) \leq V(x) \quad \forall x \forall p
$$

Remarkable: No explicit condition on jumps!

Proof idea

Proof idea:

$$
\begin{equation*}
\left[A_{p}^{\text {diff }}, A_{q}^{\text {diff }}\right]=0 \quad \forall p, q \in\{1,2, \ldots, \mathrm{P}\} \tag{C}
\end{equation*}
$$

implies

$$
\left[\Pi_{p}, A_{q}^{\text {diff }}\right]=0 \quad \wedge \quad\left[\Pi_{p}, \Pi_{q}\right]=0
$$

Consider switching times $t_{0}<t_{1}<\ldots<t_{k}<t$ and $p_{i}:=\sigma\left(t_{i}+\right)$, then

$$
\begin{aligned}
x(t) & =e^{A_{p_{k}}^{\text {diff }}\left(t-t_{k}\right)} \Pi_{p_{k}} e^{A_{p_{k-1}}^{\text {diff }}\left(t_{k}-t_{k-1}\right)} \Pi_{p_{k-1}} \cdots e^{A_{p_{1}}^{\text {diff }}\left(t_{2}-t_{1}\right)} \Pi_{p_{1}} e^{A_{p_{0}}^{\text {diff }}\left(t_{1}-t_{0}\right)} \Pi_{p_{0}} x_{0} \\
& \stackrel{(C)}{=} e^{A_{1}^{\text {diff }} \Delta t_{1}} \Pi_{1} e^{A_{2}^{\text {diff }} \Delta t_{2}} \Pi_{2} \cdots e^{A_{p}^{\text {diff }} \Delta t_{p}} \Pi_{\mathrm{P}} x_{0}
\end{aligned}
$$

and $\Delta t_{p} \rightarrow \infty$ for at least one p and $t \rightarrow \infty$.

Contents

(1) Introduction

- Systems class: definition and motivation
- Examples
(2) Nonswitched DAEs
- Solutions: Consistency and underlying ODE
- Lyapunov functions
(3) Distributional solutions for switched DAEs
- Reminder: classical distribution theory
- Piecewise-smooth distributions

4 Stability results

- Impulse freeness
- Arbitrary switching
- Slow switching
- Commutativity
- Lyapunov exponent and converse Lyapunov theorem

Evolution operator

$$
\begin{aligned}
& x(t)=\underbrace{e^{A_{k}^{\text {diff }}\left(t-t_{k}\right)} \Pi_{k} e^{A_{k-1}^{\text {diff }}\left(t_{k}-t_{k-1}\right)} \Pi_{k-1} \cdots e^{A_{1}^{\text {diff }}\left(t_{2}-t_{1}\right)} \Pi_{1} e^{A_{0}^{\text {diff }}\left(t_{1}-t_{0}\right)} \Pi_{0}}_{=: \Phi^{\sigma}\left(t, t_{0}\right)} x\left(t_{0}-\right) \\
& \text { Let } \mathcal{M}:=\left\{\left(A_{p}^{\text {diff }}, \Pi_{p}\right) \mid \text { corresponding to }\left(E_{p}, A_{p}\right), p=1, \ldots, \mathrm{p}\right\} . \\
& \text { Definition (Set of all evolution matrices with fixed time span } t>0)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{S}_{t} & :=\left\{\Phi^{\sigma}(t, 0) \mid \sigma \text { arbitrary switching signal }\right\} \\
& =\left\{\prod_{i=0}^{k} e^{A_{i f i f}^{d i f}} \Pi_{i} \mid\left(A_{i}^{\text {diff }}, \Pi_{i}\right) \in \mathcal{M}, \sum_{i=0}^{k} \tau_{i}=\Delta t, \tau_{i}>0\right\}
\end{aligned}
$$

Lemma (Semi group, T. \& Wirth 2012)

The set $\mathcal{S}:=\bigcup_{t>0} \mathcal{S}_{t}$ is a semi group with

$$
\mathcal{S}_{s+t}=\mathcal{S}_{s} \mathcal{S}_{t}:=\left\{\Phi_{s} \Phi_{t} \mid \Phi_{s} \in \mathcal{S}_{s}, \Phi_{t} \in \mathcal{S}_{t}\right\}
$$

Exponential growth bound

Definition (Exponential growth bound)

For $t>0$ the exponential growth bound of $E_{\sigma} \dot{x}=A_{\sigma} x$ is

$$
\lambda_{t}\left(\mathcal{S}_{t}\right):=\sup _{\Phi_{t} \in \mathcal{S}_{t}} \frac{\ln \left\|\Phi_{t}\right\|}{t} \in \mathbb{R} \cup\{-\infty, \infty\}
$$

Definition implies for all solutions x of $E_{\sigma} \dot{x}=A_{\sigma} x$:

$$
\|x(t)\|=\left\|\Phi_{t} x(0-)\right\| \leq\left\|\Phi_{t}\right\|\|x(0-)\| \leq e^{\lambda_{t}\left(\mathcal{S}_{t}\right) t}\|x(0-)\|
$$

Difference to switched ODEs without jumps

$\lambda_{t}\left(\mathcal{S}_{t}\right)= \pm \infty$ is possible!

All jumps are trivial, i.e. $\Pi_{p}=0 \quad \Rightarrow \quad \lambda_{t}\left(\mathcal{S}_{t}\right)=-\infty$

Infinite exponential growth bound

Example 1a revisited:

$$
\begin{aligned}
& \left(E_{1}, A_{1}\right)=\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right]\right) \quad\left(E_{2}, A_{2}\right)=\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right) \\
& x_{2} \\
& \text { ||x|| } \\
& \|x\|
\end{aligned}
$$

For small dwell times: $\Phi_{t} \approx\left(\Pi_{1} \Pi_{2}\right)^{k}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]^{k}=2^{k-1}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$

Lyapunov exponent of a switched DAE

Theorem (Boundedness of \mathcal{S}_{t}, T. \& Wirth 2012)

\mathcal{S}_{t} is bounded \Leftrightarrow the set of consistency projectors is product bounded (swDAE) $\quad E_{\sigma} \dot{x}=A_{\sigma} x$

Theorem (Lyapunov exponent well defined, T. \& Wirth 2012)

Let the consistency projectors be product bounded and not all be trivial, then the (upper) Lyapunov exponent

$$
\lambda(\mathcal{S}):=\lim _{t \rightarrow \infty} \lambda_{t}\left(\mathcal{S}_{t}\right)=\lim _{t \rightarrow \infty} \sup _{\Phi_{t} \in \mathcal{S}_{t}} \frac{\ln \left\|\Phi_{t}\right\|}{t}
$$

of (swDAE) is well defined and finite.
Note that: (swDAE) uniformly exponentially stable $: \Leftrightarrow \quad \exists M \geq 1, \mu>0:\|x(t)\| \leq M e^{-\mu t}\|x(0-)\| \quad \forall t \geq 0$
$\Rightarrow \quad \lambda(\mathcal{S}) \leq-\mu<0$

Converse Lyapunov theorem for switched DAEs

For $\varepsilon>0$ define "Lyapunov norm"

$$
\|x\|_{\varepsilon}:=\sup _{t>0} \sup _{\Phi_{t} \in \mathcal{S}_{t}} e^{-(\lambda(\mathcal{S})+\varepsilon) t}\left\|\Phi_{t} x\right\|
$$

(swDAE)

$$
E_{\sigma} \dot{x}=A_{\sigma} x
$$

Theorem (Converse Lyapunov theorem, T. \& Wirth 2012)

(swDAE) is uniformly exponentially stable $\forall \sigma$
$\Rightarrow V=\| \| \cdot \|_{\varepsilon}$ is Lyapunov function for sufficiently small $\varepsilon>0$
In particular: $V(\Pi x) \leq V(x)$ for all consistency projectors Π

Non-smooth Lyapunov function

$\|\mid \cdot\|_{\varepsilon}$ in general non-smooth. Smoothification as in Yin, Sontag \& Wang 1996 might violate jump condition!

Summary

$$
(\mathrm{swDAE}) \quad E_{\sigma} \dot{x}=A_{\sigma} x
$$

- solution theory
- no classical solutions: jumps and impulses
- impulse freeness condition (IFC)
- jumps are still allowed
- stability conditions
- multiple Lyapunov functions with jump condition (LJC)
- slow switching
- commutativity (quadratic Lyapunov function)
- converse Lyapunov theorem
S. Trenn: Distributional differential algebraic equations. Dissertation, Universitätsverlag Ilmenau, Ilmenau, Aug. 2009.
D. Liberzon \& S. Trenn: On stability of linear switched differential algebraic equations. Proc. IEEE 48th Conf. Decision and Control, Shanghai, pp. 2156-2161, Dec. 2009.
A. Tanwani \& S. Trenn: On observability of switched differential-algebraic equations. Proc. IEEE 49th Conf. Decision and Control, Atlanta, pp. 5656-5661, Dec. 2010.
D. Liberzon, S. Trenn \& F. Wirth: Commutativity and asymptotic stability for linear switched DAEs.

Proc. IEEE 50th Conf. Decision and Control, Orlando, pp. 417-422, Dec. 2011.
D. Liberzon \& S. Trenn: Switched nonlinear differential algebraic equations: Solution theory, Lyapunov functions, and stability. Automatica 48(5), pp. 954-963, May. 2012.
S. Trenn \& F. Wirth: Linear switched DAEs: Lyapunov exponents, Barabanov norms, and Lyapunov functions.
submitted to Proc. IEEE 51th Conf. Decision and Control, Hawaii.

