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Switched DAEs

Linear switched DAE (differential algebraic equation)

(swDAE) Eσ(t)ẋ(t) = Aσ(t)x(t) or short Eσ ẋ = Aσx

with

switching signal σ : R→ {1, 2, . . . , p}
piecewise constant, right-continuous
locally finitely many jumps (no Zeno behavior)

matrix pairs (E1,A1), . . . , (Ep,Ap)

Ep,Ap ∈ Rn×n, p = 1, . . . , p
(Ep,Ap) regular, i.e. det(Eps − Ap) 6≡ 0
impulse-free solutions (but jumps are allowed!)

Question

Eσ ẋ = Aσx asymp. stable ∀σ ?⇒ common Lyapunov function
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Lyapunov norms

More general approach:

Definition (Lyapunov norm)

~ · ~ is a λ-Lyapunov norm, λ ∈ R,

:⇔ ∀σ : ~x(t)~ ≤ eλt~x(0−)~ ∀ solutions x of Eσ ẋ = Aσx

In particular: λ < 0 ⇒ V = ~ · ~ defines Lyapunov function

New question

Find Lyapunov norm for Eσ ẋ = Aσx (stable or unstable)
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Solution formula

Theorem (Adiff and Π(E ,A), Tanwani & T. 2010)

Let (E ,A) be regular and consider

E ẋ = Ax on [0,∞)

⇒ ∃ unique consistency projector Π(E ,A) and unique flow matrix Adiff:

x(0) = Π(E ,A)x(0−) ẋ = Adiffx on (0,∞)

Furthermore, AdiffΠ(E ,A) = Π(E ,A)A
diff.

Corollary (Solution formula for switched DAE)

Any solution of the switched DAE Eσ ẋ = Aσx has the form

x(t) = eAdiff
k (t−tk )ΠkeAdiff

k−1(tk−tk−1)Πk−1 · · · eAdiff
1 (t2−t1)Π1eAdiff

0 (t1−t0)Π0x(t0−)
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Evolution operator

x(t) = eAdiff
k (t−tk )ΠkeAdiff

k−1(tk−tk−1)Πk−1 · · · eAdiff
1 (t2−t1)Π1eAdiff

0 (t1−t0)Π0︸ ︷︷ ︸
=: Φσ(t, t0)

x(t0−)

Let M :=
{

(Adiff
p ,Πp) | corresponding to (Ep,Ap), p = 1, . . . , p

}
.

Definition (Set of all evolutions with fixed time span ∆t > 0)

S∆t :=
⋃
σ

{ Φσ(t0 + ∆t, t0) | t0 ∈ R }

=

{
k∏

i=0

eAdiff
i τi Πi

∣∣∣∣∣ (Adiff
i ,Πi ) ∈M,

k∑
i=0

τi = ∆t, τi > 0

}
Note that ∀t0 ∈ R ∀∆t > 0:

x solves Eσ ẋ = Aσx ⇔ ∃Φ∆t ∈ S∆t : x(t0 + ∆t) = Φ∆tx(t0−)
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Semi group property

Lemma (Semi group)

The set
S :=

⋃
∆t>0

S∆t

is a semi group with

Ss+t = SsSt := { ΦsΦt | Φs ∈ Ss ,Φt ∈ St }

Need commutativity to show “⊆”:

eAdiffτΠ = eAdiff(τ−τ ′) eAdiffτ ′ΠΠ = eAdiff(τ−τ ′)ΠeAdiffτ ′Π

for any (Adiff,Π) ∈M and 0 < τ ′ < τ
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Exponential growth bound

Definition (Exponential growth bound)

For t > 0 the exponential growth bound of Eσ ẋ = Aσx is

λt(St) := sup
Φt∈St

ln ‖Φt‖
t

∈ R ∪ {−∞,∞}

Definition implies for all solutions x of Eσ ẋ = Aσx :

‖x(t)‖ = ‖Φtx(0−)‖ ≤ ‖Φt‖ ‖x(0−)‖ ≤ eλt(St) t‖x(0−)‖

Difference to switched ODEs without jumps

λt(St) = ±∞ is possible!

All jumps are trivial, i.e. Πp = 0 ⇒ λt(St) = −∞
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Infinite exponential growth bound

Example:

(E1,A1) =

([
0 0
0 1

]
,

[
1 −1
0 −1

])
(E2,A2) =

([
0 0
1 1

]
,

[
−1 0
0 −1

])

x1

x2

t

‖x‖

t

‖x‖

For small dwell times: Φt ≈ (Π1Π2)k =

[
1 1
1 1

]k
= 2k−1

[
1 1
1 1

]
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Existence of exponential growth rate

Theorem (Boundedness of St)
St is bounded ⇔ the set of consistency projectors is product bounded

Reminder:

St :=

{
k∏

i=0

eAdiff
i τi Πi

∣∣∣∣∣ (Adiff
i ,Πi ) ∈M,

k∑
i=0

τi = ∆t, τi > 0

}

Theorem (Exponential growth rate well defined)

Let the consistency projectors be product bounded and not all be trivial,
then the (upper) Lyapunov exponent

λ(S) := lim
t→∞

λt(St) = lim
t→∞

sup
Φt∈St

‖Φt‖
t

of Eσ ẋ = Aσx is well defined and finite.
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Barabanov norm

Definition (Barabanov norm)

~ · ~ is called Barabanov norm for Eσ ẋ = Aσx , iff

1 ~x(t)~ = ~Φtx(0−)~ ≤ eλt~x(0−)~, Φt ∈ St
2 ∀x0 ∈ Rn ∃Φt ∈ St : ~Φtx0~ = eλt~x0~

In particular, ever Barabanov norm is also a λ-Lyapunov norm, hence if
λ < 0 we have a Lyapunov function

Theorem (Existence of Barabanov norm)

Assume S is irreducible, i.e. SM ⊆M implies M = ∅ or M = Rn.
Then the following are equivalent:

1 The consistency projectors are product bounded

2 The Lyapunov exponent λ(S) is bounded

3 There exists a Barabanov norm with λ = λ(S)
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Construction of Barabanov norm

Construction of Barabanov norm similar as in (Wirth 2002, LAA):

S∞ :=
⋂
T≥0

⋃
t≥T

e−λ(S) tSt

is a compact nontrivial semigroup, the limit semigroup.

~x~ := max { ‖Sx‖ | S ∈ S∞ }

is the sought Barabanov norm.
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The reducible case

Theorem (Lyapunov norm)

For each ε > 0

~x~ε := sup
t>0

sup
Φt∈St

e−(λ(S)+ε)t‖Φtx‖

defines a Lyapunov norm for Eσ ẋ = Aσx.

Corollary (Converse Lyapunov Theorem)

Eσ ẋ = Aσx is uniformly exp. stable ⇒ V = ~ · ~ε is Lyapunov function

In particular: V (Πx) ≤ V (x) for all consistency projectors Π

Non-smooth Lyapunov function

~ · ~ε in general non-smooth. Smoothification as in Yin, Sontag & Wang
1996 might violate jump condition!

Stephan Trenn Technomathematics group, University of Kaiserslautern, Germany

A converse Lyapunov theorem for switched DAEs



Introduction Evolution operator and its semigroup Barabanov and Lyapunov norm Conclusions

Conclusions

Studied switched DAEs Eσ ẋ = Aσx

Key observation:

x(t) = eAdiff
k (t−tk )Πk · · · eAdiff

1 (t2−t1)Π1eAdiff
0 (t1−t0)Π0x(t0−)

Flow set

St :=

{
k∏

i=0

eAdiff
i τi Πi

∣∣∣∣∣ (Adiff
i ,Πi ) ∈M,

k∑
i=0

τi = ∆t, τi > 0

}

Product boudedness of consistency projectors necessary and
sufficient for boundedness of St
Construction of Barabanov norm in irreducible case

Construction of Lyapunov norm in reducible case
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