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Switched DAEs

Linear switched DAE (differential algebraic equation)

(swDAE) Eσ(t)ẋ(t) = Aσ(t)x(t) or short Eσ ẋ = Aσx

with

switching signal σ : R→ {1, 2, . . . , p}
piecewise constant, right-continuous
locally finitely many jumps (no Zeno behavior)

matrix pairs (E1,A1), . . . , (Ep,Ap)

Ep,Ap ∈ Rn×n, p = 1, . . . , p
(Ep,Ap) regular, i.e. det(Eps − Ap) 6≡ 0
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Motivation and question

Why switched DAEs Eσ ẋ = Aσx ?

1 modeling of electrical circuits with switches

2 DAEs Eẋ = Ax + Bu with switched feedback controller

u(t) = Fσ(t)x(t) or

u(t) = Fσ(t)x(t) + Gσ(t)ẋ(t)

3 approximation of time-varying DAEs E (t)ẋ(t) = A(t)x(t) via
piecewise constant DAEs

Question

Ep ẋ = Apx asymp. stable ∀p ?⇒ Eσ ẋ = Aσx asymp. stable
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Commutativity and stability for switched ODEs

Theorem (Narendra und Balakrishnan 1994)

Consider switched ODE

(swODE) ẋ = Aσx

with Ap Hurwitz, p ∈ {1, 2, . . . , p} and commuting Ap, i.e.

[Ap,Aq] := ApAq − AqAp = 0 ∀p, q ∈ {1, 2, . . . , p} (C)

⇒ (swODE) asymptotically stable ∀σ.

Sketch of proof: Consider switching times t0 < t1 < . . . < tk < t and
pi := σ(ti+), then

x(t) = eApk
(t−tk )eApk−1

(tk−tk−1) · · · eAp1
(t2−t1)eAp0

(t1−t0)x0

(C)
= eA1∆t1eA2∆t2 · · · eAp∆tpx0

and ∆tp →∞ for at least one p and t →∞.
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Generalization to (swDAE)

(swDAE) Eσ ẋ = Aσx

Generalization - Questions

Which matrices have to commute?

What about the jumps?

Example 1: (E1,A1) =
(
[ 0 1

0 0 ] ,
[

0 −1
1 −1

])
, (E2,A2) =

(
[ 0 0

1 1 ] ,
[−1 0

0 −1

])
[A1,A2] = 0, but instability possible (see next slide)

Example 2: (E1,A1) =
(
[ 0 1

0 0 ] ,
[

0 −1
1 −1

])
, (E2,A2) =

(
[ 0 0

0 1 ] ,
[

1 0
0 −1

])
[A1,A2] 6= 0, but stability for all switching signals (see next slide)
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Examples: jumps and stability

Example 1:

(E1,A1)=

([
0 0
0 1

]
,

[
1 −1
0 −1

])
(E2,A2)=

([
0 0
1 1

]
,

[
−1 0
0 −1

])
Example 2:

(E1,A1)=

([
0 0
0 1

]
,

[
1 −1
0 −1

])
(E2,A2)=

([
0 0
0 1

]
,

[
1 0
0 −1

])

x1

x2

unsta
ble!!!

x1

x2

x1

x2

Remark: V (x) = x2
1 + x2

2 is a Lyapunov function for all individuel modes
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Observations

Solutions

modes have restricted dynamics: consistency spaces

switching ⇒ inconsistent initial values

inconsistent initial values ⇒ jumps in x

Stability

common Lyapunov function not sufficient

commutativity of A-matrices not sufficient

stability depends on jumps

Impulses

switching ⇒ Dirac impulses in solution x

Dirac impulse = infinite peak ⇒ instability
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Solutions for nonswitched DAE

Consider Eẋ = Ax

Theorem (Weierstraß 1868)

(E ,A) regular ⇔
∃S ,T ∈ Rn×n invertible:

(SET ,SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
,

N nilpotent, T = [V ,W ]

Corollary (for regular (E ,A))

x solves E ẋ = Ax ⇔

x(t) = VeJtv0

V ∈ Rn×n1 , J ∈ Rn1×n1 , v0 ∈ Rn1 .
Consistency space: C(E ,A) := imV

(E ,A) =
([

0 4 0
1 0 0
0 0 0

]
,
[−4π −4 0
−1 4π 0
−1 −4 4

])

x1

x2

x3

V =
[

0 4
1 0
1 1

]
, J =

[−1 −4π
π −1

]
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Consistency projectors

Observation [
I 0
0 N

](
v̇
ẇ

)
=

[
J 0
0 I

](
v
w

)
Consistent initial values:

(
v0

0

)
∈ Rn

arbitrary initial value Rn 3
(
v0

w0

)
Π7→
(
v0

0

)
consistent initial value

Definition (Consistency projector for regular (E ,A))

Let S ,T ∈ Rn×n invertible with (SET ,SAT ) =
([

I 0
0 N

]
,
[
J 0
0 I

])
:

Π(E ,A) = T

[
I 0
0 0

]
T−1

Remark: Π(E ,A) can be calculated easily and directly from (E ,A)
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The matrix Adiff

Let (E ,A) be regular with (SET ,SAT ) =
([

I 0
0 N

]
,
[
J 0
0 I

])
, N nilpotent

consistency projector: Π(E ,A) = T

[
I 0
0 0

]
T−1

Definition (Differential “projector”)

Πdiff
(E ,A) = T

[
I 0
0 0

]
S

Theorem (Differential dynamic of DAE)

x solves E ẋ = Ax ⇒ ẋ = Πdiff
(E ,A)Ax

Adiff := Πdiff
(E ,A)A = T

[
J 0
0 0

]
T−1
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Stability result

Consider again switched DAE: Eσ ẋ = Aσx

Impulse freeness condition

(IFC): ∀p, q ∈ {1, . . . ,N} : Ep(I − Πp)Πq = 0

Theorem (T. 2009)

(IFC) ⇒ All solutions of Eσ ẋ = Aσx are impulse free

Theorem (Main result)

(IFC) ∧ (Ep,Ap) asymp. stable ∀p ∧

[Adiff
p ,Adiff

q ] = 0 ∀p, q ∈ {1, 2, . . . , p}

⇒ (swDAE) asymptotically stable ∀σ

Interesting: no additional condition on jumps!
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Sketch of proof

From
[Adiff

p ,Adiff
q ] = 0 ∀p, q ∈ {1, 2, . . . , p} (C)

follows also

[Πp,A
diff
p ] = 0 ∧ [Πp,Πq] = 0 ∧ [Adiff

p ,Πq] = 0.

Consider switching times t0 < t1 < . . . < tk < t and pi := σ(ti+), then

x(t) = eA
diff
pk

(t−tk )Πpk e
Adiff
pk−1

(tk−tk−1)
Πpk−1

· · · eA
diff
p1

(t2−t1)Πp1e
Adiff
p0

(t1−t0)Πp0x0

(K)
= eA

diff
1 ∆t1 Π1 eA

diff
2 ∆t2 Π2 · · · eA

diff
p ∆tpΠpx0

and ∆tp →∞ for at least one p and t →∞.
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Quadratic Lyapunov function

Theorem (Existence of common quadratic Lyapunov function)

(IFC) ∧ (Ep,Ap) asymp. stable ∀p ∧ [Adiff
p ,Adiff

q ] = 0 ∀p, q
⇒ ∃ common quadratic Lyapunov function with

V (Πpx) ≤ V (x) ∀x ∀p

Key observation for proof: [Adiff
1 ,Adiff

2 ] = 0 ⇒ ∃T invertierbar:

TAdiff
1 T−1 =


A11 0 0 0

0 A12 0 0
0 0 0 0
0 0 0 0

 TAdiff
2 T−1 =


A21 0 0 0

0 0 0 0
0 0 A22 0
0 0 0 0


with Aij Hurwitz und [A11,A21] = 0
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Common quadratic Lyapunov function: Construction

TAdiff
1 T−1 =


A11 0 0 0

0 A12 0 0
0 0 0 0
0 0 0 0

 TAdiff
2 T−1 =


A21 0 0 0

0 0 0 0
0 0 A22 0
0 0 0 0


with Aij Hurwitz und [A11,A21] = 0 ⇒ ∃P1, P2, P3 s.p.d.:

A>11P1 + P1A11 < 0 ∧ A>21P1 + P1A21 < 0
A>12P2 + P2A12 < 0
A>22P3 + P3A22 < 0

⇒

P = T−>


P1 0 0 0
0 P2 0 0
0 0 P3 0
0 0 0 I

T−1

gives sought quadratic Lyapunov function V (x) = x>Px .
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Summary

We considered switched DAEs: Eσ ẋ = Aσx

Solution theory
no classical solutions: jumps and impulses
impulse freeness condition
jumps still permitted

Commutativity and stability
commutativity of A-matrices not sufficient
but commutativity of Adiff-matrices sufficient
also takes care of jumps
commutativity ⇒ quadratic Lyapunov function

Next step: Converse Lyapunov theorem for general case
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