Detection of Impulsive Effects in Switched DAEs with Applications to Power Electronics Reliability Analysis

Alejandro D. Domínguez-García and Stephan Trenn

49th IEEE Conference on Decision and Control Friday, December 17, 2010, 11:20–11:40, Atlanta, USA

3 Dual buck converter case study

mpulse detection

Dual buck converter case study 0000

Standard modeling of circuits

General form:

 $\dot{x} = Ax + Bu$

Switched ODE?

Impulse detection

Dual buck converter case study 0000

Mode 1: $\frac{d}{dt}i_L = \frac{1}{L}u$ Mode 2: $\frac{d}{dt}i_L = -\frac{1}{L}u_C$ $\frac{d}{dt}u_C = \frac{1}{C}i_L$

No switched ODE

Not possible to write as

$$\dot{x}(t) = A_{\sigma(t)}x + B_{\sigma(t)}u$$

Impulse detection

Dual buck converter case study

Include algebraic equations in description

With $x := (i_L, u_L, i_C, u_C)$ write each mode as: Algebraic equations $\Rightarrow E_p$ singular Mode 1: $L \frac{d}{dt} i_L = u_L, C \frac{d}{dt} u_C = i_C, 0 = u_L - u, 0 = i_C$ $\begin{vmatrix} L & 0 & 0 & 0 \\ 0 & 0 & 0 & C \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix} \dot{x} = \begin{vmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{vmatrix} x + \begin{vmatrix} 0 \\ 0 \\ -1 \\ 0 \end{vmatrix} u$ Mode 2: $L \frac{d}{dt} i_L = u_L, C \frac{d}{dt} u_C = i_C, 0 = i_L - i_C, 0 = u_L + u_C$

Switched DAEs

DAE = Differential algebraic equation

Switched DAE

$$E_{\sigma(t)}\dot{x}(t) = A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t)$$

(swDAE)

or short $E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$

with

- switching signal $\sigma:\mathbb{R}\to\{1,2,\ldots,\mathrm{p}\}$
 - piecewise constant
 - locally finitely many jumps
- modes $(E_1, A_1, B_1), \dots, (E_p, A_p, B_p)$

•
$$E_p, A_p \in \mathbb{R}^{n \times n}$$
, $p = 1, \dots, p$

•
$$B_p: \mathbb{R}^{n \times m}$$
, $p = 1, \dots, p$

• input $u: \mathbb{R} \to \mathbb{R}^m$

Problem

Jumps and impulses in solution.

Dual buck converter case study 0000

Impulse example

Dual buck converter case study 0000

Impulse example

Dual buck converter case study 0000

Solution of example

$$L rac{\mathrm{d}}{\mathrm{d}t} i_L = u_L$$
, $0 = u_L - u$ or $0 = i_L$

Assume:
$$u$$
 constant, $i_L(0) = 0$
switch at $t_s > 0$: $\sigma(t) = \begin{cases} 1, & t < t_s \\ 2, & t \ge t_s \end{cases}$

Dual buck converter case study 0000

2 Impulse detection

Impulse detection algorithm

- Identify switches and possible faults in electrical circuit
- **2** Treat constant sources as states via $\dot{u} = 0$
- **③** Treat sinusoidal sources as states via $\dot{u} = \omega v$, $\dot{v} = -\omega u$
- Model each configuration as $E_p \dot{x} = A_p x$, $p \in \{1, \dots, p\}$, same x!
- Check regularity of (E_p, A_p)
- **6** Calculate Wong sequences \mathcal{V}_i and \mathcal{W}_i for each (E_p, A_p)
- **O** Calculate the consistency projectors $\Pi_p \in \mathbb{R}^{n \times n}$ for each (E_p, A_p)
- Ocheck the Impulse Freeness Condition (IFC):

$$E_q(I - \Pi_q)\Pi_p = 0$$

I we

Regularity of matrix pairs (E, A)

Definition (Regularity of (E, A))

 $(E,A) \text{ regular } \Leftrightarrow \quad \det(sE-A) \not\equiv 0.$

Theorem (Characterizations of regularity)

The following statements are equivalent:

- (E, A) is regular.
- x solves $E\dot{x} = Ax$ and $x(0) = 0 \Rightarrow x \equiv 0$.
- $\exists S, T \in \mathbb{R}^{n \times n}$ invertible which yield quasi-Weierstrass form

$$(SET, SAT) = \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right), \qquad (QWF)$$

where N is a nilpotent matrix.

Impulse detection

Dual buck converter case study

Wong sequences and the quasi-Weierstrass form

$$(SET, SAT) = \begin{pmatrix} \begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \end{pmatrix},$$
 (QWF)

Theorem ([Armentano '86], [Berger, Ilchmann, T. '10])

For regular (E, A) define the Wong sequences

$$\begin{aligned} \mathcal{V}^{i+1} &:= A^{-1}(E\mathcal{V}^i), \\ \mathcal{W}^{i+1} &:= E^{-1}(A\mathcal{W}^i), \end{aligned} \qquad \qquad \mathcal{V}^0 &:= \mathbb{R}^n, \\ \mathcal{W}^0 &:= \{0\}. \end{aligned}$$

Then $\mathcal{V}^i \stackrel{\text{finite}}{\to} \mathcal{V}^*$ and $\mathcal{W}^i \stackrel{\text{finite}}{\to} \mathcal{W}^*$. Choose V, W such that $\operatorname{im} V = \mathcal{V}^*$ and $\operatorname{im} W = \mathcal{W}^*$ than

$$T := [V, W], \quad S := [EV, AW]^{-1}$$

yield (**QWF**).

Impulse detection

Dual buck converter case study

Matlab code for calculating the Wong sequences

Calculating a basis of the pre-image $A^{-1}(\operatorname{im} S)$:

```
function V=getPreImage(A,S)
[m1,n1]=size(A); [m2,n2]=size(S);
if m1==m2 | m2==0
    H=null([A,S]);
    V=colspace(H(1:n1,:));
end;
```

Calculating V with $\operatorname{im} V = \mathcal{V}_{k^*}$:

```
function V = getVspace(E,A)
[m,n]=size(E);
if (m==n) & size(E)==size(A)
V=eye(n,n);
oldsize=n; newsize=n; finished=0;
while finished==0;
EV=colspace(E*V);
V=getPreImage(A,EV);
oldsize=newsize;
newsize=rank(V);
finished = (newsize==oldsize);
end;
end;
```

Analog calculation of W with $\operatorname{im} W = \mathcal{W}_{k^*}$.

Impulse detection

Dual buck converter case study 0000

Consistency projector

$$(SET, SAT) = \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right)$$
(QWF)

Definition (Consistency projector)

Let (E, A) be regular with (**QWF**), consistency projector:

$$\Pi_{(E,A)} := T \begin{bmatrix} I & 0\\ 0 & 0 \end{bmatrix} T^{-1}$$

Theorem

 $x \text{ solves } E_{\sigma} \dot{x} = A_{\sigma} x \quad \Rightarrow \quad \forall t \in \mathbb{R}:$

$$x(t+) = \prod_{(E_q, A_q)} x(t-), \quad q := \sigma(t+)$$

Dual buck converter case study

2 Impulse detection

3 Dual buck converter case study

Dual buck converter case study

Dual buck converter model

ON: SW_1 closed SW_2 closed SW_3 open SW_4 open OFF: SW_1 open SW_2 open SW_3 closed SW_4 closed

Faults: Other switch positions & Short-circuit in C_1

Step 1 √

Impulse detection

Dual buck converter case study

DAE description

ON configuration (E_{ON}, A_{ON}) :

Step 2, Step 3, Step 4 🗸

Check regularity: $det(sE_p - A_p) \neq 0$, $p = 0, \dots, 31$ Step 5 \checkmark

Calculate Wong sequences Step 6 ✓

Calculate consistency projectors Π_p , $p = 0, \ldots, 31$ Step 7 \checkmark

Impulse detection 00000 Dual buck converter case study

Impulse Freeness Check (Step 8)

Check for each $p, q \in \{0, ..., 31\}$ whether $E_q(I - \Pi_q)\Pi_p = 0$:

Conclusion: Algorithm revisited

- Identify switches and possible faults in electrical circuit
- **2** Treat constant sources as states via $\dot{u} = 0$
- **③** Treat sinusoidal sources as states via $\dot{u} = \omega v$, $\dot{v} = -\omega u$
- Model each configuration as $E_p \dot{x} = A_p x$, $p \in \{1, \dots, p\}$
- Check regularity of (E_p, A_p)
- **6** Calculate Wong sequences V_i and W_i for each (E_p, A_p)
- **O** Calculate the consistency projectors $\Pi_p \in \mathbb{R}^{n \times n}$ for each (E_p, A_p)
- Ocheck the Impulse Freeness Condition (IFC):

$$E_q(I - \Pi_q)\Pi_p = 0$$

Highlights:

- Easily implentable
- Works with symbolic entries in the matrices