Modeling electrical circuits with switched differential algebraic equations

Stephan Trenn
Institute for Mathematics, University of Würzburg, Germany

Seminar at GRACE, Università degli Studi del Sannio, Benevento, Italy, 2010/09/17

Julius-MaximiliansUNIVERSITÄT WÜRZBURG

Contents

(1) Introduction
(2) Distributions as solutions

- Review: classical distribution theory
- Restriction of distributions
- Piecewise smooth distributions
(3) Regularity of matrix pairs and solution formulas
(4) Stability
(5) Conclusions

Standard modeling of circuits

$$
\frac{\mathrm{d}}{\mathrm{~d} t} i_{L}=\frac{1}{L} u
$$

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} i_{L} & =-\frac{1}{L} u_{C} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} U_{C} & =\frac{1}{C} i_{L}
\end{aligned}
$$

General form: $\dot{x}=A x+B u$

Switched ODE?

Mode 1: $\quad \frac{\mathrm{d}}{\mathrm{d} t} i_{L}=\frac{1}{L} u$
Mode 2: $\quad \frac{\mathrm{d}}{\mathrm{d} t} i_{L}=-\frac{1}{L} u_{C}$

$$
\frac{d}{d t} u_{C}=\frac{1}{C} i_{L}
$$

No switched ODE

Not possible to write as

$$
\dot{x}(t)=A_{\sigma(t)} x+B_{\sigma(t)} u \text {. }
$$

Include algebraic equations in description

With $x:=\left(i_{L}, u_{L}, i_{C}, u_{C}\right)$ write each mode as:

$$
E_{p} \dot{x}=A_{p} x+B_{p} u
$$

Algebraic equations $\Rightarrow E_{p}$ singular
Mode 1: $\quad L \frac{\mathrm{~d}}{\mathrm{~d} t} i_{L}=u_{L}, C \frac{\mathrm{~d}}{\mathrm{~d} t} u_{C}=i_{C}, 0=u_{L}-u, 0=i_{C}$

$$
\left[\begin{array}{llll}
L & 0 & 0 & 0 \\
0 & 0 & 0 & C \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \dot{x}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] x+\left[\begin{array}{c}
0 \\
0 \\
-1 \\
0
\end{array}\right] u
$$

Mode 2: $\quad L \frac{\mathrm{~d}}{\mathrm{~d} t} i_{L}=u_{L}, C \frac{\mathrm{~d}}{\mathrm{~d} t} u_{C}=i_{C}, 0=i_{L}-i_{C}, 0=u_{L}+u_{C}$

Switched DAEs

DAE $=$ Differential algebraic equation

Switched DAE

$$
\begin{equation*}
E_{\sigma(t)} \dot{x}(t)=A_{\sigma(t)} x(t)+B_{\sigma(t)} u(t) \tag{swDAE}
\end{equation*}
$$

or short $E_{\sigma} \dot{x}=A_{\sigma} x+B_{\sigma} u$
with

- switching signal $\sigma: \mathbb{R} \rightarrow\{1,2, \ldots, \mathrm{p}\}$
- piecewise constant
- locally finite jumps
- modes $\left(E_{1}, A_{1}, B_{1}\right), \ldots,\left(E_{\mathrm{p}}, A_{\mathrm{p}}, B_{\mathrm{p}}\right)$
- $E_{p}, A_{p} \in \mathbb{R}^{n \times n}, p=1, \ldots, \mathrm{p}$
- $B_{p}: \mathbb{R}^{n \times m}, p=1, \ldots, \mathrm{p}$
- input $u: \mathbb{R} \rightarrow \mathbb{R}^{m}$

Question

Existence and nature of solutions?

Simpler example

$$
\left(E_{1}, A_{1}\right):\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \dot{x}=\left[\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right] \times \quad\left(E_{2}, A_{2}\right):\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \dot{x}=\left[\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right] \times
$$

non-switched:

switched:

Observations

Solutions

- Modes have constrained dynamics: Consistency spaces
- Switching \Rightarrow Inconsistent initial values
- Inconsistent initial values \Rightarrow Jumps in x

Stability

- Common Lyapunov function not sufficient
- Overall stability depend on jumps

Impulses

- Switching \Rightarrow Dirac impulses in solution x
- Dirac impulse $=$ infinite peak \Rightarrow Instability

Impulse example

inductivity law: $\quad L \frac{\mathrm{~d}}{\mathrm{~d} t} i_{L}=u_{L}$ switch dependent: $\quad 0=u_{L}-u$
or $\quad 0=i$

Impulse example

$$
\begin{aligned}
& x=\left[i_{L}, u_{L}\right]^{\top} \\
& {\left[\begin{array}{ll}
L & 0 \\
0 & 0
\end{array}\right] \dot{x}=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right] x+\left[\begin{array}{c}
0 \\
-1
\end{array}\right] u}
\end{aligned}
$$

$$
x=\left[i_{L}, u_{L}\right]^{\top}
$$

$$
\left[\begin{array}{ll}
L & 0 \\
0 & 0
\end{array}\right] \dot{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] x+\left[\begin{array}{l}
0 \\
0
\end{array}\right] u
$$

Solution of example

$L \frac{\mathrm{~d}}{\mathrm{~d} t} i_{L}=u_{L}, \quad 0=u_{L}-u$ or $0=i_{L}$
Assume: u constant, $i_{L}(0)=0$
switch at $t_{s}>0: \sigma(t)= \begin{cases}1, & t<t_{s} \\ 2, & t \geq t_{s}\end{cases}$
$u_{L}(t)$

$$
i_{L}(t)
$$

Contents

(1) Introduction
(2) Distributions as solutions

- Review: classical distribution theory
- Restriction of distributions
- Piecewise smooth distributions
(3) Regularity of matrix pairs and solution formulas

4 Stability
(5) Conclusions

Distribution theorie - basic ideas

Distributions - overview

- Generalized functions
- Arbitrarily often differentiable
- Dirac-Impulse δ_{0} is "derivative" of jump function $\mathbb{1}_{[0, \infty)}$

Two different formal approaches
(1) Functional analytical: Dual space of the space of test functions (L. Schwartz 1950)
(2) Axiomatic: Space of all "derivatives" of continuous functions (J. Sebastião e Silva 1954)

Distributions - formal

Definition (Test functions)

$\mathcal{C}_{0}^{\infty}:=\{\varphi: \mathbb{R} \rightarrow \mathbb{R} \mid \varphi$ is smooth with compact support $\}$

Definition (Distributions)

$\mathbb{D}:=\left\{D: \mathcal{C}_{0}^{\infty} \rightarrow \mathbb{R} \mid D\right.$ is linear and continuous $\}$
Definition (Regular distributions)
$f \in L_{1, \operatorname{loc}}(\mathbb{R} \rightarrow \mathbb{R}): \quad f_{\mathbb{D}}: \mathcal{C}_{0}^{\infty} \rightarrow \mathbb{R}, \varphi \mapsto \int_{\mathbb{R}} f(t) \varphi(t) \mathrm{d} t \in \mathbb{D}$

Definition (Derivative)

$D^{\prime}(\varphi):=-D\left(\varphi^{\prime}\right)$

Dirac Impulse at $t_{0} \in \mathbb{R}$

$$
\delta_{t_{0}}: \mathcal{C}_{0}^{\infty} \rightarrow \mathbb{R}, \quad \varphi \mapsto \varphi\left(t_{0}\right)
$$

Multiplication with functionen

Definition (Multiplication with smooth functions)

$\alpha \in \mathcal{C}^{\infty}: \quad(\alpha D)(\varphi):=D(\alpha \varphi)$
(swDAE) $\quad E_{\sigma} \dot{x}=A_{\sigma} x+B_{\sigma} u$

Coefficients not smooth

Problem: $E_{\sigma}, A_{\sigma}, B_{\sigma} \notin \mathcal{C}^{\infty}$
Observation:

$$
\begin{gathered}
E_{\sigma} \dot{x}=A_{\sigma} x+B_{\sigma} \\
i \in \mathbb{Z}: \sigma_{\left[t_{i}, t_{i+1}\right)} \equiv p_{i}
\end{gathered} \quad \Leftrightarrow \quad \forall i \in \mathbb{Z}:\left(E_{p_{i}} \dot{x}\right)_{\left[t_{i}, t_{i+1}\right)}=\left(A_{\left.p_{i} x+B_{p_{i}} u\right)_{\left[t_{i}, t_{i+1}\right)}}\right.
$$

New question: Restriction of distributions

Desired properties of distributional restriction

Distributional restriction:

$$
\{M \subseteq \mathbb{R} \mid M \text { interval }\} \times \mathbb{D} \rightarrow \mathbb{D}, \quad(M, D) \mapsto D_{M}
$$

and for each interval $M \subseteq \mathbb{R}$
(1) $D \mapsto D_{M}$ is a projection (linear and idempotent)
(2) $\forall f \in L_{1, \mathrm{loc}}:\left(f_{\mathbb{D}}\right)_{M}=\left(f_{M}\right)_{\mathbb{D}}$
(3) $\forall \varphi \in \mathcal{C}_{0}^{\infty}: \quad\left[\begin{array}{cll}\operatorname{supp} \varphi \subseteq M & \Rightarrow & D_{M}(\varphi)=D(\varphi) \\ \operatorname{supp} \varphi \cap M=\emptyset & \Rightarrow & D_{M}(\varphi)=0\end{array}\right]$
(- $\left(M_{i}\right)_{i \in \mathbb{N}}$ pairwise disjoint, $M=\bigcup_{i \in \mathbb{N}} M_{i}$:

$$
D_{M_{1} \cup M_{2}}=D_{M_{1}}+D_{M_{2}}, \quad D_{M}=\sum_{i \in \mathbb{N}} D_{M_{i}}, \quad\left(D_{M_{1}}\right)_{M_{2}}=0
$$

Theorem

Such a distributional restriction does not exist.

Proof of non-existence of restriction

Consider the following distribution(!):

$$
D:=\sum_{i \in \mathbb{N}} d_{i} \delta_{d_{i}}, \quad d_{i}:=\frac{(-1)^{i}}{i+1}
$$

Restriction should give

$$
D_{(0, \infty)}=\sum_{k \in \mathbb{N}} d_{2 k} \delta_{d_{2 k}}
$$

Choose $\varphi \in \mathcal{C}_{0}^{\infty}$ such that $\varphi_{[0,1]} \equiv 1$:

$$
D_{(0, \infty)}(\varphi)=\sum_{k \in \mathbb{N}} d_{2 k}=\sum_{k \in \mathbb{N}} \frac{1}{2 k+1}=\infty
$$

Dilemma

Switched DAEs

- Examples: distributional solutions
- Multiplication with non-smooth coefficients
- Or: Restriction on intervals

Distributions

- Distributional restriction not possible
- Multiplication with non-smooth coefficients not possible
- Initial value problems cannot be formulated

Underlying problem

Space of distributions too big.

Piecewise smooth distributions

Define a suitable smaller space:

Definition (Piecewise smooth distributions $\mathbb{D}_{\mathrm{pw}} \mathcal{C}^{\infty}$)

$$
\mathbb{D}_{\mathrm{pwC}} \infty:=\left\{\begin{array}{l|l}
f_{\mathbb{D}}+\sum_{t \in T} D_{t} & \begin{array}{l}
f \in \mathcal{C}_{\mathrm{pw}}^{\infty}, \\
T \subseteq \mathbb{R} \text { locally finite }, \\
\forall t \in T: D_{t}=\sum_{i=0}^{n_{t}} a_{i}^{t} \delta_{t}^{(i)}
\end{array}
\end{array}\right\}
$$

Properties of $\mathbb{D}_{\mathrm{pwC}}{ }^{\infty}$

- $\mathcal{C}_{\mathrm{pw}}^{\infty} " \subseteq " \mathbb{D}_{\mathrm{pw}} \mathcal{C}^{\infty}$
- $D \in \mathbb{D}_{\mathrm{pwC}}{ }^{\infty} \Rightarrow D^{\prime} \in \mathbb{D}_{\mathrm{pw}}{ }^{\infty}$
- Restriction $\mathbb{D}_{\mathrm{pw} \mathcal{C}^{\infty}} \rightarrow \mathbb{D}_{\mathrm{pw}} \mathcal{C}^{\infty}, D \mapsto D_{M}$ for all intervals $M \subseteq \mathbb{R}$ well defined
- Multiplication with $\mathcal{C}_{\mathrm{pw}}^{\infty}$-functions well defined
- Left and right sided evaluation at $t \in \mathbb{R}: D(t-), D(t+)$
- Impulse at $t \in \mathbb{R}: D[t]$
$\left(\right.$ swDAE) $\quad E_{\sigma} \dot{x}=A_{\sigma} x+B_{\sigma} u \quad$ with input $u \in\left(\mathbb{D}_{\mathrm{pw} \mathcal{C}^{\infty}}\right)^{m}$

Application to (swDAE)

x solves (swDAE) $\quad \Leftrightarrow \quad x \in\left(\mathbb{D}_{\mathrm{pw}} \mathcal{C}^{\infty}\right)^{n}$ and (swDAE) holds in $\mathbb{D}_{\mathrm{pw} \mathcal{C}^{\infty}}$

Relevant questions

Consider $E_{\sigma} \dot{x}=A_{\sigma} x+B_{\sigma} u$ with regular matrix pairs $\left(E_{p}, A_{p}\right)$.

- Existence of solutions?
- Uniqueness of solutions?
- Inconsistent initial value problems?
- Jumps and impulses in solutions?
- Conditions for impulse free solutions?
- Stability

Theorem (Existence and uniqueness)

$$
\begin{aligned}
\forall x^{0} \in\left(\mathbb{D}_{\mathrm{pw}} \mathcal{C}^{\infty}\right)^{n} \forall t_{0} & \in \mathbb{R} \forall u \in\left(\mathbb{D}_{\mathrm{pw} \mathcal{C}}\right)^{m} \exists!x \in\left(\mathbb{D}_{\mathrm{pw}} \mathcal{C}^{\infty}\right)^{n}: \\
x_{\left(-\infty, t_{0}\right)} & =x^{0}{ }_{\left(-\infty, t_{0}\right)} \\
\left(E_{\sigma} \dot{x}\right)_{\left[t_{0}, \infty\right)} & =\left(A_{\sigma} x+B_{\sigma} u\right)_{\left[t_{0}, \infty\right)}
\end{aligned}
$$

Remark: x is called consistent solution $: \Leftrightarrow \quad E_{\sigma} \dot{x}=A_{\sigma} x+B_{\sigma} u$

Contents

(1) Introduction
(2) Distributions as solutions

- Review: classical distribution theory
- Restriction of distributions
- Piecewise smooth distributions
(3) Regularity of matrix pairs and solution formulas
(4) Stability
(5) Conclusions

Regularity: Definition and characterization

Definition (Regularity)

(E, A) regular $: \Leftrightarrow \operatorname{det}(s E-A) \not \equiv 0$

Theorem (Characterizations of regularity)

The following statements are equivalent:

- (E, A) is regular.
- $\exists S, T \in \mathbb{R}^{n \times n}$ invertible which yield quasi-Weierstrass form

$$
(S E T, S A T)=\left(\left[\begin{array}{ll}
I & 0 \tag{QWF}\\
0 & N
\end{array}\right],\left[\begin{array}{ll}
J & 0 \\
0 & I
\end{array}\right]\right)
$$

where N is a nilpotent matrix.

- \forall smooth $f \exists$ classical solution x of $E \dot{x}=A x+f$ which is uniquely given by $x\left(t_{0}\right)$ for any $t_{0} \in \mathbb{R}$.
- x solves $E \dot{x}=A x$ and $x(0)=0 \quad \Rightarrow \quad x \equiv 0$.

$$
(S E T, S A T)=\left(\left[\begin{array}{ll}
1 & 0 \\
0 & N
\end{array}\right],\left[\begin{array}{ll}
J & 0 \\
0 & 1
\end{array}\right]\right),
$$

(QWF)

Theorem ([Armentano '86], [Berger, Ilchmann, T. '10])

For regular (E, A) define the Wong sequences

$$
\begin{array}{rlrl}
\mathcal{V}^{i+1} & :=A^{-1}\left(E \mathcal{V}^{i}\right), & \mathcal{V}^{0} & :=\mathbb{R}^{n}, \\
\mathcal{W}^{i+1} & :=E^{-1}\left(A \mathcal{W}^{i}\right), & \mathcal{W}^{0}:=\{0\} .
\end{array}
$$

Then $\mathcal{V}^{i} \xrightarrow{\text { finite }} \mathcal{V}^{*}$ and $\mathcal{W}^{i} \xrightarrow{\text { finite }} \mathcal{W}^{*}$. Choose V, W such that $\operatorname{im} V=\mathcal{V}^{*}$ and $\operatorname{im} W=\mathcal{W}^{*}$ than

$$
T:=[V, W], \quad S:=[E V, A W]^{-1}
$$

yield (QWF).

Consistency projector

$$
(S E T, S A T)=\left(\left[\begin{array}{ll}
1 & 0 \tag{QWF}\\
0 & N
\end{array}\right],\left[\begin{array}{ll}
J & 0 \\
0 & 1
\end{array}\right]\right)
$$

Definition (Consistency projector)

Let (E, A) be regular with (QWF), consistency projector:

$$
\Pi_{(E, A)}:=T\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] T^{-1}
$$

Theorem
x solves $E_{\sigma} \dot{x}=A_{\sigma} x \quad \Rightarrow \quad \forall t \in \mathbb{R}$:

$$
x(t+)=\Pi_{\left(E_{q}, A_{q}\right)} x(t-), \quad q:=\sigma(t+)
$$

Differential projector

$$
(S E T, S A T)=\left(\left[\begin{array}{ll}
1 & 0 \tag{QWF}\\
0 & N
\end{array}\right],\left[\begin{array}{ll}
J & 0 \\
0 & I
\end{array}\right]\right)
$$

Definition (Differential projector)

Let (E, A) be regular with (QWF), differential projector:

$$
\Pi_{(E, A)}^{\text {diff }}:=T\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] S
$$

$A^{\text {diff }}:=\Pi_{(E, A)}^{\text {diff }} A$

Theorem

$$
\begin{aligned}
& x \text { solves } E_{\sigma} \dot{x}=A_{\sigma} x \quad \Rightarrow \quad \forall t \in \mathbb{R}: \\
& \dot{x}(t+)=A_{\sigma(t+)}^{\text {diff }} x(t+)
\end{aligned}
$$

Impulse projector

$$
(S E T, S A T)=\left(\left[\begin{array}{ll}
1 & 0 \tag{QWF}\\
0 & N
\end{array}\right],\left[\begin{array}{ll}
J & 0 \\
0 & 1
\end{array}\right]\right),
$$

Definition (Impulse projector)

Let (E, A) be regular with (QWF), impulse projector:

$$
\Pi_{(E, A)}^{\mathrm{diff}}:=T\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] S
$$

$E^{\mathrm{imp}}:=\Pi_{(E, A)}^{\operatorname{imp}} E$

Theorem

x solves $E_{\sigma} \dot{x}=A_{\sigma} x \quad \Rightarrow \quad \forall t \in \mathbb{R}$:

$$
x[t]=\sum_{i=0}^{n-2}\left(E_{\sigma(t+)}^{\mathrm{imp}}\right)^{i+1}(x(t+)-x(t-)) \delta_{t}^{(i)}
$$

Solution formula, inhomogeneous non-switched case

$$
\begin{align*}
& (S E T, S A T)=\left(\left[\begin{array}{ll}
1 & 0 \\
0 & N
\end{array}\right],\left[\begin{array}{ll}
J & 0 \\
0 & 1
\end{array}\right]\right), \tag{QWF}\\
& \Pi_{(E, A)}:=T\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] T^{-1}, \quad \Pi_{(E, A)}^{\text {diff }}:=T\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] S, \quad \Pi_{(E, A)}^{\mathrm{imp}}:=T\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] S, \\
& A^{\text {diff }}:=\Pi_{(E, A)}^{\text {diff }} A, \quad E^{\text {imp }}:=\prod_{(E, A)}^{\text {imp }} E
\end{align*}
$$

Theorem (Explicit solution formula, non-switched)

$$
\begin{aligned}
& x \text { solves } E \dot{x}=A x+f \Leftrightarrow \exists c \in \mathbb{R}^{n} \forall t \in \mathbb{R}: \\
& x(t)=e^{A^{\text {difif }}} \Pi_{(E, A)} c+\int_{0}^{t} e^{A^{\text {diff }}(t-s)} \Pi_{(E, A)}^{\text {diff }} f(s) \mathrm{d} s-\sum_{i=0}^{n-1}\left(E^{\text {imp }}\right)^{i} \Pi_{(E, A)^{\text {imp }}} f^{(i)}(t)
\end{aligned}
$$

Jumps and impulses for switched DAE

$$
E_{\sigma} \dot{x}=A_{\sigma} x+B_{\sigma} u
$$

$$
B_{q}^{\text {imp }}:=\prod_{\left(E_{q}, A_{q}\right)}^{\operatorname{imp}} B_{q}, \quad q \in\{1, \ldots, \mathrm{p}\}
$$

Theorem (Jumps and impulses)

x solves (swDAE) $\Rightarrow \quad \forall t \in \mathbb{R}$:

$$
\begin{aligned}
x(t+)= & \Pi_{\left(E_{q}, A_{q}\right)} x(t-)-\sum_{i=0}^{n-1}\left(E_{q}^{\text {imp }}\right)^{i} B_{q}^{\text {imp }} u^{(i)}(t+), \\
x[t]= & -\sum_{i=0}^{n-1}\left(E_{q}^{\text {imp }}\right)^{i+1}\left(I-\Pi_{\left(E_{q}, A_{q}\right)}\right) x(t-) \delta_{t}^{(i)} \quad q:=\sigma(t+) \\
& -\sum_{i=0}^{n-1}\left(E_{q}^{\text {imp }}\right)^{i+1} \sum_{j=0}^{i} B_{q}^{\text {imp }} u^{(i-j)}(0+) \delta_{t}^{(j)}
\end{aligned}
$$

Asymptotic stability

$$
E_{\sigma} \dot{x}=A_{\sigma} x
$$

(swDAEhom)

Definition (Asymptotic stability)

(swDAEhom) asymptotically stable $: \Leftrightarrow \quad \forall$ solutions $x \in\left(\mathbb{D}_{\text {pw }} \infty\right)^{n}$:
(S) $\forall \varepsilon>0 \exists \delta>0$: $\|x(0-)\|<\delta \Rightarrow \forall t>0:\|x(t \pm)\|<\varepsilon$,
(A) $x(t \pm) \rightarrow 0$ as $t \rightarrow \infty$,
(I) $\forall t \geq 0: \quad x[t]=0$.

Theorem (Impulse-freeness)

$\forall p, q \in\{1, \ldots, p\}: E_{q}\left(I-\Pi_{\left(E_{q}, A_{q}\right)}\right) \Pi_{\left(E_{p}, A_{p}\right)}=0 \Rightarrow$ (I)

Lyapunov functions

Consider non-switched DAE

$$
E \dot{x}=A x
$$

with consistency space \mathcal{V}^{*}
Definition (Lyapunov function for $E \dot{x}=A x$)
$Q=Q^{\top}>0$ on \mathcal{V}^{*} and $P=P^{\top}>0$ solves

$$
A^{\top} P E+E^{\top} P A=-Q \quad \text { (generalized Lyapunov equation) }
$$

Lyapunov function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}: x \mapsto(E x)^{\top} P E x$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} V(x)=(E \dot{x})^{\top} P E x+(E x)^{\top} P E \dot{x}=x^{\top}\left(A^{\top} P E+E^{\top} P A\right) x=-x^{\top} Q x
$$

Theorem (Owens \& Debeljkovic 1985)

$E \dot{x}=A x$ asymptotically stable $\Leftrightarrow \exists$ Lyapunov function

Stability under arbitrary switching

Consider $E_{\sigma} \dot{x}=A_{\sigma} \times$ with additional assumption:
$\left(\exists \mathbf{V}_{\mathbf{p}}\right): \quad \forall p \in\{1, \ldots, N\} \exists$ Lyapunov function V_{p} for $\left(E_{p}, A_{p}\right)$
i.e. each $\operatorname{DAE}\left(E_{p}, A_{p}\right)$ is asymp. stable
(IFC): $\forall p, q \in\{1, \ldots, N\} \quad E_{q}\left(I-\Pi_{\left(E_{q}, A_{q}\right)}\right) \Pi_{\left(E_{p}, A_{p}\right)}=0$

Lyapunov jump condition

(LJC): $\forall p, q=1, \ldots, N \forall x \in \mathfrak{C}_{\left(E_{q}, A_{q}\right)}: \quad V_{p}\left(\Pi_{p} x\right) \leq V_{q}(x)$

Theorem (Liberzon and T. 2009)

$(\mathrm{IFC}) \wedge\left(\exists \mathrm{V}_{\mathrm{p}}\right) \wedge(\mathrm{LJC}) \Rightarrow($ swDAE $)$ asymptotically stable

Slow switching

Slow switching signals with average dwell time $\tau_{a}>0$:
$\Sigma_{\tau_{a}}:=\left\{\sigma \in \Sigma \mid \exists N_{0}>0 \forall t \in \mathbb{R} \forall \Delta t>0: N_{\sigma}(t, t+\Delta t)<N_{0}+\frac{\Delta t}{\tau_{a}}\right\}$.
where $N_{\sigma}\left(t_{1}, t_{2}\right)$ is the number of switches in interval $\left[t_{1}, t_{2}\right)$

Theorem (Liberzon \& T. 2010)

$\exists \tau_{a}>0 \forall \sigma \in \Sigma_{\tau_{a}}: \quad(\mathrm{IFC}) \wedge\left(\exists \mathbf{V}_{\mathbf{p}}\right) \Rightarrow(\mathbf{s w D A E})$ asymptotically stable

Explicit formula for τ_{a}

It is possible to explicitly calculate τ_{a} in terms of minimum and maximum eigenvalues of certain matrices involving P_{p}, Q_{p}.

Conclusions

- DAEs natural for modeling electrical circuits
- Switches induce jumps and impulses \Rightarrow Distributional solutions
- General distributions not suitable
- Smaller space: Piecewise-smooth distributions
- Regularity \Leftrightarrow Existence \& uniqueness of solutions
- Unique consistency jumps
- Condition for impulse-freeness
- Stability

Matlab Code for calculating the consistency projectors

Calculating a basis of the pre-image $A^{-1}(\mathrm{im} S)$:

```
function V=getPreImage(A,S)
[m1,n1]=size(A); [m2,n2]=size(S);
if m1==m2 | m2==0
    H=null([A,S]);
    V=colspace(H(1:n1,:));
end;
```

Calculating V with im $V=\mathcal{V}_{k^{*}}$:

```
function V = getVspace(E,A)
[m,n]=size(E);
if (m==n) & size(E)== size(A)
    V=eye(n,n);
    oldsize=n; newsize=n; finished=0;
    while finished==0;
        EV=colspace(E*V);
        V=getPreImage(A,EV);
        oldsize=newsize;
        newsize= rank(V);
        finished = (newsize==oldsize);
    end;
end;
```

Calculating W with $\operatorname{im} W=\mathcal{W}_{k^{*}}$ analog.

Explicit formula for sufficient average dwell time

Let P_{p}, Q_{p} be the solutions of the generalized Lyapunov equation corresponding to $\left(E_{p}, A_{p}\right)$, let O_{p} be an orthogonal basis matrix of \mathcal{V}_{p}^{*} and let
$\mu_{p, q}:=\frac{\lambda_{\max }\left(O_{p}^{\top} \Pi_{q}^{\top} E_{q}^{\top} P_{q} E_{q} \Pi_{q} O_{p}\right)}{\lambda_{\min }\left(O_{p}^{\top} E_{p}^{\top} P_{p} E_{p} O_{p}\right)}>0, \quad \lambda_{p}:=\frac{\lambda_{\min }\left(O_{p}^{\top} Q_{p} O_{p}\right)}{\lambda_{\max }\left(O_{p}^{\top} E_{p}^{\top} P_{p} E_{p} O_{p}\right)}>0$,
where $\lambda_{\min }(\cdot)$ and $\lambda_{\text {max }}(\cdot)$ denote the minimal and maximal eigenvalue of a symmetric matrix, respectively. Then an average dwell time of

$$
\tau_{a}>\frac{\max _{p, q} \ln \mu_{p, q}}{\min _{p} \lambda_{p}}
$$

guarantees asymptotic stability.

