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Standard modeling of circuits

−
+

Lu

iL

LCuC

iL

d
dt iL = 1

L u
d
dt iL = − 1

L uC

d
dt uC = 1

C iL

General form: ẋ = Ax + Bu
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Switched ODE?

−
+

u C uC

iC

L uL

iL

Mode 1: d
dt iL = 1

L u

Mode 2: d
dt iL = − 1

L uC

d
dt uC = 1

C iL

No switched ODE

Not possible to write as ẋ(t) = Aσ(t)x + Bσ(t)u .
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Include algebraic equations in description

−
+

u C uC

iC

L uL

iL With x := (iL, uL, iC , uC ) write each mode as:

Ep ẋ = Apx + Bpu

Algebraic equations ⇒ Ep singular

Mode 1: L d
dt iL = uL, C d

dt uC = iC , 0 = uL − u, 0 = iC
L 0 0 0
0 0 0 C
0 0 0 0
0 0 0 0

 ẋ =


0 1 0 0
0 0 1 0
0 1 0 0
0 0 1 0

 x +


0
0
−1
0

 u

Mode 2: L d
dt iL = uL, C d

dt uC = iC , 0 = iL − iC , 0 = uL + uC
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Switched DAEs

DAE = Differential algebraic equation

Switched DAE

Eσ(t)ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t) (swDAE)

or short Eσ ẋ = Aσx + Bσu

with

switching signal σ : R→ {1, 2, . . . , p}
piecewise constant
locally finite jumps

modes (E1,A1,B1), . . . , (Ep,Ap,Bp)
Ep, Ap ∈ Rn×n, p = 1, . . . , p
Bp : Rn×m, p = 1, . . . , p

input u : R→ Rm

Question

Existence and nature of solutions?
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Simpler example

(E1,A1) :

[
0 1
0 0

]
ẋ =

[
0 −1
1 −1

]
x (E2,A2) :

[
1 1
0 0

]
ẋ =

[
−1 −1
1 0

]
x

non-switched:

x1

x2

switched:

x1

x2
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Observations

Solutions

Modes have constrained dynamics: Consistency spaces

Switching ⇒ Inconsistent initial values

Inconsistent initial values ⇒ Jumps in x

Stability

Common Lyapunov function not sufficient

Overall stability depend on jumps

Impulses

Switching ⇒ Dirac impulses in solution x

Dirac impulse = infinite peak ⇒ Instability
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Impulse example

−
+

Lu uL

iL

inductivity law: L d
dt iL = uL

switch dependent: 0 = uL − u

−
+

Lu uL

iL

or 0 = i
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Impulse example

−
+

Lu uL

iL

x = [iL, uL]>[
L 0
0 0

]
ẋ =

[
0 1
0 1

]
x +

[
0
−1

]
u

−
+

Lu uL

iL

x = [iL, uL]>[
L 0
0 0

]
ẋ =

[
0 1
1 0

]
x +

[
0
0

]
u
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Solution of example

L d
dt iL = uL, 0 = uL − u or 0 = iL

Assume: u constant, iL(0) = 0

switch at ts > 0: σ(t) =

{
1, t < ts

2, t ≥ ts

t

uL(t)

ts
t

iL(t)

ts

u

δts
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Distribution theorie - basic ideas

Distributions - overview

Generalized functions

Arbitrarily often differentiable

Dirac-Impulse δ0 is “derivative” of jump function 1[0,∞)

Two different formal approaches

1 Functional analytical: Dual space of the space of test functions
(L. Schwartz 1950)

2 Axiomatic: Space of all “derivatives” of continuous functions
(J. Sebastião e Silva 1954)
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Distributions - formal

Definition (Test functions)

C∞0 := { ϕ : R→ R | ϕ is smooth with compact support }

Definition (Distributions)

D := { D : C∞0 → R | D is linear and continuous }

Definition (Regular distributions)

f ∈ L1,loc(R→ R): fD : C∞0 → R, ϕ 7→
∫

R f (t)ϕ(t)dt ∈ D

Definition (Derivative)

D ′(ϕ) := −D(ϕ′)

Dirac Impulse at t0 ∈ R
δt0 : C∞0 → R, ϕ 7→ ϕ(t0)

Stephan Trenn Institute for Mathematics, University of Würzburg, Germany

Modeling electrical circuits with switched differential algebraic equations



Introduction Distributions as solutions Regularity & Solution formulas Stability Conclusions Appendix

Multiplication with functionen

Definition (Multiplication with smooth functions)

α ∈ C∞ : (αD)(ϕ) := D(αϕ)

(swDAE) Eσ ẋ = Aσx + Bσu

Coefficients not smooth

Problem: Eσ,Aσ,Bσ /∈ C∞

Observation:

Eσ ẋ = Aσx + Bσ
i ∈ Z : σ[ti ,ti+1) ≡ pi

⇔ ∀i ∈ Z : (Epi ẋ)[ti ,ti+1) = (Api x+Bpi u)[ti ,ti+1)

New question: Restriction of distributions
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Desired properties of distributional restriction

Distributional restriction:

{ M ⊆ R | M interval } × D→ D, (M,D) 7→ DM

and for each interval M ⊆ R
1 D 7→ DM is a projection (linear and idempotent)

2 ∀f ∈ L1,loc : (fD)M = (fM )D

3 ∀ϕ ∈ C∞0 :

[
suppϕ ⊆ M ⇒ DM (ϕ) = D(ϕ)

suppϕ ∩M = ∅ ⇒ DM (ϕ) = 0

]
4 (Mi )i∈N pairwise disjoint, M =

⋃
i∈N Mi :

DM1∪M2 = DM1 + DM2 , DM =
∑
i∈N

DMi , (DM1 )M2
= 0

Theorem

Such a distributional restriction does not exist.
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Proof of non-existence of restriction

Consider the following distribution(!):

D :=
∑
i∈N

di δdi , di :=
(−1)i

i + 1

0 1

1
2

1
3

1
4

Restriction should give

D(0,∞) =
∑
k∈N

d2k δd2k

Choose ϕ ∈ C∞0 such that ϕ[0,1] ≡ 1:

D(0,∞)(ϕ) =
∑
k∈N

d2k =
∑
k∈N

1

2k + 1
=∞
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Dilemma

Switched DAEs

Examples: distributional
solutions

Multiplication with non-smooth
coefficients

Or: Restriction on intervals

Distributions

Distributional restriction not
possible

Multiplication with non-smooth
coefficients not possible

Initial value problems cannot be
formulated

Underlying problem

Space of distributions too big.
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Piecewise smooth distributions

Define a suitable smaller space:

Definition (Piecewise smooth distributions DpwC∞)

DpwC∞ :=

 fD +
∑
t∈T

Dt

∣∣∣∣∣∣
f ∈ C∞pw,
T ⊆ R locally finite,

∀t ∈ T : Dt =
∑nt

i=0 at
i δ

(i)
t


fD

ti−1

Dti−1

ti

Dti

ti+1

Dti+1
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Properties of DpwC∞

C∞pw “⊆” DpwC∞

D ∈ DpwC∞ ⇒ D ′ ∈ DpwC∞

Restriction DpwC∞ → DpwC∞ , D 7→ DM for all intervals M ⊆ R well
defined

Multiplication with C∞pw-functions well defined

Left and right sided evaluation at t ∈ R: D(t−),D(t+)

Impulse at t ∈ R: D[t]

(swDAE) Eσ ẋ = Aσx + Bσu with input u ∈ (DpwC∞)m

Application to (swDAE)

x solves (swDAE) :⇔ x ∈ (DpwC∞)n and (swDAE) holds in DpwC∞
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Relevant questions

Consider Eσ ẋ = Aσx + Bσu with regular matrix pairs (Ep,Ap).

Existence of solutions?

Uniqueness of solutions?

Inconsistent initial value problems?

Jumps and impulses in solutions?

Conditions for impulse free solutions?

Stability

Theorem (Existence and uniqueness)

∀x0 ∈ (DpwC∞)n ∀t0 ∈ R ∀u ∈ (DpwC∞)m ∃!x ∈ (DpwC∞)n:

x(−∞,t0) = x0
(−∞,t0)

(Eσ ẋ)[t0,∞) = (Aσx + Bσu)[t0,∞)

Remark: x is called consistent solution :⇔ Eσ ẋ = Aσx + Bσu
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Regularity: Definition and characterization

Definition (Regularity)

(E ,A) regular :⇔ det(sE − A) 6≡ 0

Theorem (Characterizations of regularity)

The following statements are equivalent:

(E ,A) is regular.

∃S ,T ∈ Rn×n invertible which yield quasi-Weierstrass form

(SET ,SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, (QWF)

where N is a nilpotent matrix.

∀ smooth f ∃ classical solution x of E ẋ = Ax + f which is uniquely
given by x(t0) for any t0 ∈ R.

x solves E ẋ = Ax and x(0) = 0 ⇒ x ≡ 0.
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Wong sequences and the quasi-Weierstrass form

(SET ,SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, (QWF)

Theorem ([Armentano ’86], [Berger, Ilchmann, T. ’10])

For regular (E ,A) define the Wong sequences

V i+1 := A−1(EV i ), V0 := Rn,

W i+1 := E−1(AW i ), W0 := {0}.

Then V i finite→ V∗ and W i finite→ W∗. Choose V ,W such that im V = V∗
and im W =W∗ than

T := [V ,W ], S := [EV ,AW ]−1

yield ( QWF).
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Consistency projector

(SET ,SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
(QWF)

Definition (Consistency projector)

Let (E ,A) be regular with (QWF), consistency projector:

Π(E ,A) := T

[
I 0
0 0

]
T−1

Theorem

x solves Eσ ẋ = Aσx ⇒ ∀t ∈ R :

x(t+) = Π(Eq,Aq)x(t−), q := σ(t+)
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Differential projector

(SET ,SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, (QWF)

Definition (Differential projector)

Let (E ,A) be regular with (QWF), differential projector:

Πdiff
(E ,A) := T

[
I 0
0 0

]
S

Adiff := Πdiff
(E ,A)A

Theorem

x solves Eσ ẋ = Aσx ⇒ ∀t ∈ R :

ẋ(t+) = Adiff
σ(t+)x(t+)
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Impulse projector

(SET ,SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, (QWF)

Definition (Impulse projector)

Let (E ,A) be regular with (QWF), impulse projector:

Πdiff
(E ,A) := T

[
0 0
0 I

]
S

E imp := Πimp
(E ,A)E

Theorem

x solves Eσ ẋ = Aσx ⇒ ∀t ∈ R :

x [t] =
n−2∑
i=0

(E imp
σ(t+))

i+1(x(t+)− x(t−))δ
(i)
t
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Solution formula, inhomogeneous non-switched case

(SET ,SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, (QWF)

Π(E ,A) := T [ I 0
0 0 ] T−1, Πdiff

(E ,A) := T [ I 0
0 0 ] S , Πimp

(E ,A) := T [ 0 0
0 I ] S ,

Adiff := Πdiff
(E ,A)A, E imp := Πimp

(E ,A)E

Theorem (Explicit solution formula, non-switched)

x solves E ẋ = Ax + f ⇔ ∃c ∈ Rn ∀t ∈ R :

x(t) = eAdifftΠ(E ,A)c +

∫ t

0

eAdiff(t−s)Πdiff
(E ,A)f (s)ds−

n−1∑
i=0

(E imp)i Πimp
(E ,A)f

(i)(t)
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Jumps and impulses for switched DAE

Eσ ẋ = Aσx + Bσu (swDAE)

B imp
q := Πimp

(Eq,Aq)Bq, q ∈ {1, . . . , p}

Theorem (Jumps and impulses)

x solves ( swDAE) ⇒ ∀t ∈ R :

x(t+) = Π(Eq,Aq)x(t−)−
n−1∑
i=0

(E imp
q )i B imp

q u(i)(t+),

x [t] = −
n−1∑
i=0

(E imp
q )i+1(I − Π(Eq,Aq))x(t−) δ

(i)
t q := σ(t+)

−
n−1∑
i=0

(E imp
q )i+1

i∑
j=0

B imp
q u(i−j)(0+) δ

(j)
t
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Asymptotic stability

Eσ ẋ = Aσx (swDAEhom)

Definition (Asymptotic stability)

(swDAEhom) asymptotically stable :⇔ ∀ solutions x ∈ (DpwC∞)n :

(S) ∀ε > 0 ∃δ > 0 : ‖x(0−)‖ < δ ⇒ ∀t > 0 : ‖x(t±)‖ < ε,

(A) x(t±)→ 0 as t →∞,

(I) ∀t ≥ 0 : x [t] = 0.

Theorem (Impulse-freeness)

∀p, q ∈ {1, . . . , p} : Eq(I − Π(Eq,Aq))Π(Ep,Ap) = 0 ⇒ (I)
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Lyapunov functions

Consider non-switched DAE

E ẋ = Ax

with consistency space V∗

Definition (Lyapunov function for E ẋ = Ax)

Q = Q> > 0 on V∗ and P = P> > 0 solves

A>PE + E>PA = −Q (generalized Lyapunov equation)

Lyapunov function V : Rn → R≥0 : x 7→ (Ex)>PEx

d
dt

V (x) = (Eẋ)>PEx + (Ex)>PEẋ = x>(A>PE + E>PA)x = −x>Qx

Theorem (Owens & Debeljkovic 1985)

E ẋ = Ax asymptotically stable ⇔ ∃ Lyapunov function
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Stability under arbitrary switching

Consider Eσ ẋ = Aσx with additional assumption:

(∃Vp): ∀p ∈ {1, . . . ,N} ∃ Lyapunov function Vp for (Ep,Ap)

i.e. each DAE (Ep,Ap) is asymp. stable

(IFC): ∀p, q ∈ {1, . . . ,N} Eq(I − Π(Eq,Aq))Π(Ep,Ap) = 0

Lyapunov jump condition

(LJC): ∀p, q = 1, . . . ,N ∀x ∈ C(Eq,Aq) : Vp(Πpx) ≤ Vq(x)

Theorem (Liberzon and T. 2009)

(IFC) ∧ (∃Vp) ∧ (LJC) ⇒ (swDAE) asymptotically stable
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Slow switching

Slow switching signals with average dwell time τa > 0:

Στa :=
{
σ ∈ Σ

∣∣∣ ∃N0 > 0 ∀t ∈ R ∀∆t > 0 : Nσ(t, t + ∆t) < N0 + ∆t
τa

}
.

where Nσ(t1, t2) is the number of switches in interval [t1, t2)

Theorem (Liberzon & T. 2010)

∃τa > 0 ∀σ ∈ Στa : (IFC) ∧ (∃Vp) ⇒ (swDAE) asymptotically stable

Explicit formula for τa

It is possible to explicitly calculate τa in terms of minimum and maximum
eigenvalues of certain matrices involving Pp, Qp.
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Conclusions

DAEs natural for modeling electrical circuits

Switches induce jumps and impulses ⇒ Distributional solutions

General distributions not suitable
Smaller space: Piecewise-smooth distributions

Regularity ⇔ Existence & uniqueness of solutions

Unique consistency jumps

Condition for impulse-freeness

Stability
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Matlab Code for calculating the consistency projectors

Calculating a basis of the pre-image A−1(im S):

function V=getPreImage(A,S)
[m1 ,n1]= size(A); [m2,n2]= size(S);
if m1==m2 | m2==0

H=null ([A,S]);
V=colspace(H(1:n1 ,:));

end;

Calculating V with im V = Vk∗ :

function V = getVspace(E,A)
[m,n]= size(E);
if (m==n) & size(E)== size(A)

V=eye(n,n);
oldsize=n; newsize=n; finished =0;
while finished ==0;

EV=colspace(E*V);
V=getPreImage(A,EV);
oldsize=newsize;
newsize=rank(V);
finished = (newsize == oldsize );

end;
end;

Calculating W with im W = Wk∗ analog.
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Explicit formula for sufficient average dwell time

Let Pp,Qp be the solutions of the generalized Lyapunov equation
corresponding to (Ep,Ap), let Op be an orthogonal basis matrix of V∗p
and let

µp,q :=
λmax(O>p Π>q E>q PqEqΠqOp)

λmin(O>p E>p PpEpOp)
> 0, λp :=

λmin(O>p QpOp)

λmax(O>p E>p PpEpOp)
> 0,

where λmin(·) and λmax(·) denote the minimal and maximal eigenvalue of
a symmetric matrix, respectively. Then an average dwell time of

τa >
maxp,q lnµp,q

minp λp

guarantees asymptotic stability.
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