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Switched DAEs

DAE = Differential algebraic equation

Homogeneous switched nonlinear DAE

Eσ(t)(x(t))ẋ(t) = fσ(t)(x(t)) (swDAE)

or short Eσ(x)ẋ = fσ(x)

with
switching signal σ : R→ {1, 2, . . . ,N}

piecewise constant
locally finite jumps

subsystems (E1, f1), . . . , (EN , fN)
Ep : Rn → Rn×n, fp : Rn → Rn smooth, p = 1, . . . , N
linear case: Ep ∈ Rn×n, fp = Ap ∈ Rn×n, p = 1, . . . , N

Questions

Existence and nature of solutions?

Ep(x)ẋ = fp(x) asymp. stable ∀p
?⇒ Eσ(x)ẋ = fσ(x) asymp. stable
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Example (linear)

Example (linear, i.e. Eσ ẋ = Aσx):

(E1,A1) :

[
0 1
0 0

]
ẋ =

[
0 −1
1 −1

]
x (E2,A2) :

[
1 1
0 0

]
ẋ =

[
−1 −1
1 0

]
x

non-switched:

x1

x2

switched:

x1

x2

More (linear) examples in [Liberzon & T., IEEE Proc. CDC 2009]
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Observations

Solutions

Subsystems have constrained dynamics: Consistency spaces

Switching ⇒ Inconsistent initial values

Inconsistent initial values ⇒ Jumps in x

Stability

Common Lyapunov function not sufficient

Overall stability depend on jumps

Impulses

Linear case: switching ⇒ Dirac impulses in solution x

Dirac impulse = infinite peak ⇒ Instability

Nonlinear case: f (Dirac impulse)? Undefined.
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Assumptions on subsystems

Consider non-switched DAE:

E (x)ẋ = f (x)

Definition (Consistency space)

C(E ,f ) := { x0 ∈ Rn | ∃ (classical) solution x with x(0) = x0 }

Time invariance: x solution ⇒ x(t) ∈ C(E ,f ) ∀t

Assumptions on non-switched DAE

A1 f (0) = 0, hence 0 ∈ C(E ,f )

A2 C(E ,f ) is closed manifold (possibly with boundary) in Rn

A3 ∀x0 ∈ C(E ,f )∃ unique solution x : [0,∞)→ Rn with x(0) = x0 and
x ∈ C1 ∩ C∞pw
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Linear case

Linear case: A1, A2 trivially fulfilled

Lemma (Linear case and A3)

(E ,A) fulfills A3 ⇔ matrix pair (E ,A) is regular, i.e. det(sE − A) 6≡ 0

Theorem (Linear switched case: Existence & Uniqueness, [T. 2009])

Eσ ẋ = Aσx

with regular matrix pairs (Ep,Ap) has unique solution for any switching
signal and any initial value.

Impulses in solution

Above solutions might contain impulses!
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Assumption A4

Consider switched nonlinear DAE

Eσ(t)(x(t))ẋ(t) = fσ(t)(x(t)) (swDAE)

with consistency spaces Cp := C(Ep,fp)

Assumption A4

A4 ∀p, q∈{1, . . . ,N} ∀x−0 ∈Cp ∃ unique x+
0 ∈Cq : x+

0 −x−0 ∈ker Eq(x+
0 )

Motivation:

x+
0 − x−0 jump at switching time

Dirac impulse in ẋ in direction x+
0 − x−0

A4 ⇒ no Dirac impulse in product Eσ(x)ẋ

A4 ⇒ unique jump with above property
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Existence & Uniqueness of solutions

Definition (Solution)

x ∈ C∞pw is called solution of swDAE :⇔

Eσ(x)D(xD)′ = fσ(x)D

within the space of piecewise-smooth distributions [T. 2009]

Theorem (Existence & uniqueness of solutions)

(swDAE) + A1-A4 has unique solution for all (consistent) initial values

Remark (Consistency projectors)

A4 induces unique map Πq :
⋃

p Cp → Cq such that

x(t+) = Πq(x(t−))

for all solutions of (swDAE) with σ(t+) = q.
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A4 for the linear case

Lemma (Linear consistency projector)

Choose invertible Sp,Tp ∈ Rn×n such that

(SpEpTp,SpApTp) =

([
I 0
0 Np

]
,

[
Jp 0
0 I

])
with Np nilpotent, then

Πp = Tp

[
I 0
0 0

]
T−1

p

Theorem (Linear equivalent of A4)

A4 ⇔ ∀p, q : Eq(Πq − I )Πp = 0
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Reminder: Lyapunov function for ODEs

V : Rn → Rn is called Lyapunov function for ẋ = f (x) :⇔
V is positiv definite and radially unbounded

V̇ (x) := ∇V (x)f (x) < 0 for all x 6= 0

V̇ (x) < 0 ⇔ V decreases along solutions

No reference to solutions

Definition of Lyapunov function does not refer to any solutions.

Definition (Lyapunov function for non-switched DAE)

V : C(E ,f ) → Rn is called Lyapunov function for E (x)ẋ = f (x) :⇔
L1 V is positive definite and V−1[0,V (x)] is compact

L2 ∃F : Rn × Rn → R≥0 ∀x ∈ C(E ,f ) ∀z ∈ TxC(E ,f ) :
∇V (x)z = F (x ,E (x)z)

L3 V̇ (x) := F (x , f (x)) < 0 ∀x ∈ C(E ,f ) \ {0}
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Lyapunov function and asymptotic stability

Decreasing along solutions

d
dt V (x(t))=∇V (x(t))ẋ(t)

L2
=F (x(t),E (x(t))ẋ(t))=F (x(t), f (x(t)))

L3
<0

Theorem (Lyapunov’s Direct Method for DAEs)

Consider DAE E (x)ẋ = f (x) with A1-A3.

∃ Lyapunov function V ⇒ DAE is asymptotically stable

Theorem (Linear case, [Owens & Debeljkovic 1985])

∃V for E ẋ = Ax ⇔ ∃P,Q : E>PA + A>PE = −Q
where P = P> pos. def. and Q = Q> pos. def. on C(E ,A)

V (x) = (Ex)>PEx ⇒ ∇V (x)z = (Ex)>PEz + (Ez)>PEx =: F (x ,Ez)

V̇ (x) = F (x ,Ax) = (Ex)>PAx + (Ax)>PEx = − x>Qx < 0
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Reminder A4 and stability of subsystems

Eσ(t)(x(t))ẋ(t) = fσ(t)(x(t)) (swDAE)

with consistency spaces Cp := C(Ep,fp)

Assumption A4

A4 ∀p, q∈{1, . . . ,N} ∀x−0 ∈Cp ∃ unique x+
0 ∈Cq : x+

0 −x−0 ∈ker Eq(x+
0 )

Induced consistency projectors:

Πq :
⋃
p

Cp → Cq, x−0 7→ x+
0

Assumption: Subsystem have Lyapunov functions

∃Vp : Cp → R≥0 Lyapunov function for Ep(x)ẋ = fp(x)
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Stability results

Theorem (Stability under arbitrary switching)

Consider (swDAE) with A1-A4 with induced consistency projectors Πp

and Lyapunov functions Vp. If

∀p, q ∀x ∈ Cp : Vq(Πq(x)) ≤ Vp(x)

then (swDAE) is asymptotically stable for all σ.

Theorem (Stability under average dwell time switching)

∃λ > 0 ∀p ∀x ∈ Cp : V̇p(x) ≤ λVp(x) and

∃µ ≥ 1 ∀p, q ∀x ∈ Cp : Vq(Πq(x)) ≤ µVp(x)

}
⇒

(swDAE) is asymptotically stable for all σ with average dwell time

τa >
lnµ

λ
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Average dwell time for linear case

Consider Eσ ẋ = Aσx with (Ep,Ap) regular and stable, i.e. exists
Lyapunov functions

Vp(x) = (Epx)>PpEpx , where Pp solves E>p PpAp + A>p PpEp = −Qp

and choose minimal Op such that im Op = im Πp.

Theorem (Linear always stable under average dwell time)

Eσ ẋ = Aσx is asymptotically stable for all σ with average dwell time

τa >
lnµ

λ

where
λ := max

p
λp, µ := max

p,q
µp,q,

λp :=
λmin(O>p QpOp)

λmax(O>p E>p PpEpOp)
, µp,q :=

λmax(O>p Π>q E>q PqEqΠqOp)

λmin(O>p E>p PpEpOp)
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Summary

Solution theory for switched DAEs

Consistency spaces ⇒ inconsistent initial values
Jumps in solutions ⇒ A4 & consistency projectors
Existence & Uniqueness of solutions

Lyapunov functions for DAEs

Stability results

Arbitrary switching
Average dwell time switching
Linear case: Explicit lower bound for average dwell time

Open questions:

State dependent switching (e.g. models of Diodes)
Converse Lyapunov theorems
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