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Switched DAEs

DAE = Differential algebraic equation

Homogeneous switched linear DAE

Eσ(t)ẋ(t) = Aσ(t)x(t) (swDAE)

or short Eσ ẋ = Aσx

with

Switching signal σ : R→ {1, 2, . . . ,N}
piecewise constant, right continuous
locally finitely many jumps

matrix pairs (E1,A1), . . . , (EN ,AN)

Ep, Ap ∈ Rn×n, p = 1, . . . , N
(Ep, Ap) regular, i.e. det(Eps − Ap) 6≡ 0
or more general: Ep, Ap ∈ (C∞)n×n
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Motivation and questions

Why switched DAEs Eσ ẋ = Aσx ?

1 Modelling electrical circuits

2 DAEs Eẋ = Ax + Bu with switched feedback

u(t) = Fσ(t)x(t) or

u(t) = Fσ(t)x(t) + Gσ(t)ẋ(t)

3 Approximation of time-varying DAEs E (t)ẋ = A(t)x by
piecewise-constant DAEs

Questions

1) Solution theory
2) Impulse free solutions
3) Stability
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Example: Electrical circuit with coil

Lu uL

i

E1 =

1 0 0
0 L 0
0 0 0

 A1 =

0 0 0
0 0 1
1 0 1



Lu uL

i

E2 =

1 0 0
0 L 0
0 0 0

 A2 =

0 0 0
0 0 1
0 1 0


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Solution of example

u̇ = 0, L d
dt i = uL, 0 = u + uL or 0 = iL

Assume: u(0) = u0, i(0) = 0

switch at ts > 0: σ(t) =

{
1, t < ts

2, t ≥ ts

t

uL(t)

ts
t

i(t)

ts

−u0

δts
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Distribution theorie - basic ideas

Distributions - overview

Generalized functions

Arbitrarily often differentiable

Dirac-Impulse δ0 is “derivative” of jump function 1[0,∞)

Two different formal approaches

1 Functional analytical: Dual space of the space of test functions
(L. Schwartz 1950)

2 Axiomatic: Space of all “derivatives” of continuous functions
(J.S. Silva 1954)
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Distributions - formal

Definition (Test functions)

C∞0 := { ϕ : R→ R | ϕ is smooth with compact support }

Definition (Distributions)

D := { D : C∞0 → R | D is linear and continuous }

Definition (Regular distributions)

f ∈ L1,loc(R→ R): fD : C∞0 → R, ϕ 7→
∫

R f (t)ϕ(t)dt ∈ D

Definition (Derivative)

D ′(ϕ) := −D(ϕ′)

Dirac Impulse at t0 ∈ R
δt0 : C∞0 → R, ϕ 7→ ϕ(t0)
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Multiplication with functionen

Definition (Multiplication with smooth functions)

α ∈ C∞ : (αD)(ϕ) := D(αϕ)

(swDAE) Eσ ẋ = Aσx

Coefficients not smooth

Problem: Eσ,Aσ /∈ C∞

Observation:

Eσ ẋ = Aσx
i ∈ Z : σ[ti ,ti+1) ≡ pi

⇔ ∀i ∈ Z : (Epi ẋ)[ti ,ti+1) = (Api x)[ti ,ti+1)

New question: Restriction of distributions
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Desired properties of distributional restriction

Distributional restriction:

{ M ⊆ R | M interval } × D→ D, (M,D) 7→ DM

and for each interval M ⊆ R
1 D 7→ DM is a projection (linear and idempotent)

2 ∀f ∈ L1,loc : (fD)M = (fM)D

3 ∀ϕ ∈ C∞0 :

[
suppϕ ⊆ M ⇒ DM(ϕ) = D(ϕ)

suppϕ ∩M = ∅ ⇒ DM(ϕ) = 0

]
4 (Mi )i∈N pairwise disjoint, M =

⋃
i∈N Mi :

DM1∪M2 = DM1 + DM2 , DM =
∑
i∈N

DMi , (DM1)M2
= 0

Theorem

Such a distributional restriction does not exist.
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Proof of non-existence of restriction

Consider the following distribution(!):

D :=
∑
i∈N

di δdi , di :=
(−1)i

i + 1

0
1

1
2

1
3

1
4

Properties 2 and 3 give

D(0,∞) =
∑
k∈N

d2k δd2k

Choose ϕ ∈ C∞0 such that ϕ[0,1] ≡ 1:

D(0,∞)(ϕ) =
∑
k∈N

d2k =
∑
k∈N

1

2k + 1
=∞
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Dilemma

Switched DAEs

Examples: distributional
solutions

Multiplication with non-smooth
coefficients

Or: Restriction on intervals

Distributions

Distributional restriction not
possible

Multiplication with non-smooth
coefficients not possible

Initial value problems cannot be
formulated

Underlying problem

Space of distributions too big.
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Piecewise smooth distributions

Define a suitable smaller space:

Definition (Piecewise smooth distributions DpwC∞)

DpwC∞ :=

 fD +
∑
t∈T

Dt

∣∣∣∣∣∣
f ∈ C∞pw,
T ⊆ R locally finite,

∀t ∈ T : Dt =
∑nt

i=0 at
i δ

(i)
t


fD

ti−1

Dti−1

ti

Dti

ti+1

Dti+1
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Properties of DpwC∞

C∞pw “⊆” DpwC∞

D ∈ DpwC∞ ⇒ D ′ ∈ DpwC∞

Restriction DpwC∞ → DpwC∞ , D 7→ DM for all intervals M ⊆ R well
defined

Multiplication with C∞pw-functions well defined

Left and right sided evaluation at t ∈ R: D(t−),D(t+)

Impulse at t ∈ R: D[t]

(swDAE) Eσ ẋ = Aσx

Application to (swDAE)

x solves (swDAE) :⇔ x ∈ (DpwC∞)n and (swDAE) holds in DpwC∞
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Relevant questions

Consider Eσ ẋ = Aσx with regular matrix pairs Ep,Ap.

Existence of solutions?

Uniqueness of solutions?

Inconsistent initial value problems?

Jumps and impulses in solutions?

Conditions for jump and impulse free solutions?

Theorem (Existence and uniqueness)

∀x0 ∈ (DpwC∞)n ∀t0 ∈ R ∃!x ∈ (DpwC∞)n:

x(−∞,t0) = x0
(−∞,t0)

(Eσ ẋ)[t0,∞) = (Aσx)[t0,∞)

Remark: x is called consistent solution :⇔ Eσ ẋ = Aσx on whole R.
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Consistency projectors

For (Ei ,Ai ) choose Si ,Ti invertible such that (Quasi-Weierstraß form)

(SiEiTi ,SiAiTi ) =

([
I 0
0 Ni

]
,

[
Ji 0
0 I

])

Definition (Consistency projectors)

Πi := Ti

[
I 0
0 0

]
T−1

i

Theorem

For all solutions x of (swDAE):

x(t+) = Πσ(t)x(t−)
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Impulse and jump freeness

Theorem (Impulse freeness)

If for (swDAE)

∀p, q ∈ {1, . . . ,N} : Ep(I − Πp)Πq = 0,

then all consistent solutions x ∈ (DpwC∞) are impulse free.

Basic idea of proof:
x(t+)− x(t−) ∈ im(I − Πp)Πq and Ep ẋ [t] = 0 ⇒ x [t] = 0.

Theorem (Jump freeness)

If for (swDAE)

∀p, q ∈ {1, . . . ,N} : (I − Πp)Πq = 0,

then all consistent solutions x ∈ (DpwC∞) are jump and impulse free.
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Examples revisited

(E1,A1) =

1 0 0
0 L 0
0 0 0

 ,

0 0 0
0 0 1
1 0 1

 ⇒ Π1 =

 1 0 0
0 1 0
−1 0 0



(E2,A2) =

1 0 0
0 L 0
0 0 0

 ,

0 0 0
0 0 1
0 1 0

 ⇒ Π2 =

1 0 0
0 0 0
0 0 0



Jumps? (I − Π1)Π2 =

0 0 0
0 0 0
1 0 0

, (I − Π1)Π2 =

 0 0 0
0 1 0
−1 0 0



Impulses? E1(I − Π1)Π2 = 0, E2(I − Π2)Π1 =

0 0 0
0 L 0
0 0 0


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Conclusion and outlook

Conclusion:

Motivation for switched DAEs

Distributional solution: Needed, but impossible

Solution: Piecewise-smooth distributions

Applications of solution theory: Conditions for impulse freeness of
solutions

Outlook and further results

Multiplication defined for DpwC∞ , e.g. δt
2 = 0

DAEs Eẋ = Ax + f with distributional coefficients can be studied,
e.g. ẋ = δ0x

Stability results
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