On stability of switched DAEs

Daniel Liberzon and Stephan Trenn

Coordinated Science Laboratory, University of Illinois at Urbana-Champaign

The Combined **48th IEEE Conference on Decision and Control** and **28th Chinese Control Conference**Wednesday, December 16, 2009, 17:30–17:50, Shanghai, P.R. China

Contents

1

- Introduction
 - System class: Definition and motivation
 - Destabilizing examples
- 2 Classical DAEs
 - Solutions: Consistency and underlying ODE
 - Lyapunov functions
- 3 Distributional solutions for switched DAEs
- Stability of switched DAEs
 - Impulse freeness
 - Arbitrary switching
 - Jump free switching
 - Slow switching

Switched DAEs

DAE = Differential algebraic equation

Homogeneous switched linear DAE

$$E_{\sigma(t)}\dot{x}(t) = A_{\sigma(t)}x(t)$$
 (swDAE)

or short $E_{\sigma}\dot{x} = A_{\sigma}x$

with

- switching signal $\sigma: \mathbb{R} \to \{1, 2, \dots, N\}$
 - piecewise constant
 - locally finite jumps
- matrix pairs $(E_1, A_1), \ldots, (E_N, A_N)$
 - $E_p, A_p \in \mathbb{R}^{n \times n}, p = 1, \dots, N$
 - (E_p, A_p) regular, i.e. $\det(E_p s A_p) \not\equiv 0$

Questions

Existence and nature of solutions?

$$E_p \dot{x} = A_p x$$
 asymp. stable $\forall p \stackrel{?}{\Rightarrow} E_\sigma \dot{x} = A_\sigma x$ asymp. stable

Example 1

Introduction

0.00

1

Example 1:

$$(E_1, A_1) = \begin{pmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} \end{pmatrix} \quad (E_2, A_2) = \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix} \end{pmatrix}$$

Example 2

Introduction

0000

Example 2:

$$(E_1, A_1) = \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 8\pi & 0 \\ \pi/2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \right) \quad (E_2, A_2) = \left(\begin{bmatrix} 0 & 4 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} -4\pi & -4 & 0 \\ -1 & 4\pi & 0 \\ -1 & -4 & 4 \end{bmatrix} \right)$$

$$(E_2, A_2) = \left(\begin{bmatrix} 0 & 4 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} -4\pi & -4 & 0 \\ -1 & 4\pi & 0 \\ -1 & -4 & 4 \end{bmatrix} \right)$$

Switching signal:

 $\Delta t = 1/4$

Appendix

Example 3

Example 3:

$$(E_1,A_1) = \left(\left[\begin{smallmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{smallmatrix} \right], \left[\begin{smallmatrix} -1 & 2\pi & 0 \\ -2\pi & -1 & 0 \\ 0 & 0 & 1 \end{smallmatrix} \right] \right) \quad (E_2,A_2) = \left(\left[\begin{smallmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{smallmatrix} \right], \left[\begin{smallmatrix} 4\pi & -1 & 4\pi \\ -1 & \pi & -1 \\ 1 & 0 & 0 \end{smallmatrix} \right] \right)$$

Switching signal:

 $\Delta t = 1/4$

Introduction

- - System class: Definition and motivation
 - Destabilizing examples
- Classical DAEs
 - Solutions: Consistency and underlying ODE
 - Lyapunov functions
- - Impulse freeness
 - Arbitrary switching
 - Jump free switching

 - Slow switching

Solutions of classical DAEs

Consider for now non-switched DAE $F\dot{x} = Ax$

Theorem (Weierstrass 1868)

$$(E, A)$$
 regular \Leftrightarrow $\exists S, T \in \mathbb{R}^{n \times n}$ invertible:

$$(SET, SAT) = \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right),$$

N nilpotent

Introduction

Corollary (for regular (E, A))

$$x \text{ solves } E\dot{x} = Ax \Leftrightarrow x(t) = T \begin{pmatrix} e^{Jt}v_0 \\ 0 \end{pmatrix}$$

Consistency space:
$$\mathfrak{C}_{(E,A)} := T \begin{pmatrix} * \\ 0 \end{pmatrix}$$

$$(E,A) = \left(\begin{bmatrix} 0 & 4 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} -4\pi & -4 & 0 \\ -1 & 4\pi & 0 \\ -1 & -4 & 4 \end{bmatrix} \right)$$

$$x_3$$

$$T = \begin{bmatrix} 0 & 4 & * \\ 1 & 0 & * \end{bmatrix}, J = \begin{bmatrix} -1 & -4\pi \\ -1 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 0 & 4 & * \\ 1 & 0 & * \\ 1 & 1 & * \end{bmatrix}, J = \begin{bmatrix} -1 & -4\pi \\ \pi & -1 \end{bmatrix}$$

Consistency projectors

Definition (Consistency projectors for regular (E, A))

Let $S, T \in \mathbb{R}^{n \times n}$ be invertible with $(SET, SAT) = (\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix})$:

$$\Pi_{(E,A)} := T \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} T^{-1}$$

Lyapunov functions for regular (E, A)

Definition (Lyapunov function for $E\dot{x} = Ax$)

$$Q = \overline{Q}^{\top} > 0$$
 on $\mathfrak{C}_{(E,A)}$ and $P = \overline{P}^{\top} > 0$ solves

$$A^{\top}PE + E^{\top}PA = -Q$$
 (generalized Lyapunov equation)

Lyapunov function $V: \mathbb{R}^n \to \mathbb{R}_{\geq 0}: x \mapsto (Ex)^\top PEx$

Theorem (Owens & Debeljkovic 1985)

 $E\dot{x} = Ax$ asymptotically stable $\Leftrightarrow \exists$ Lyapunov function

Remark (Other definitions for Lyapunov functions)

Other definition for Lyapunov functions are possible, for example

$$V(x) = (Ex)^{\top} Px$$

where (E, A) is index one and $A^{\top}P + P^{\top}A = -I$, $P^{\top}E = E^{\top}P > 0$.

Introduction

Intermediate summary: Problems and their solutions

Consider again switched DAE

$$E_{\sigma}\dot{x} = A_{\sigma}x \tag{swDAE}$$

- Stability criteria for single DAEs $E_p \dot{x} = A_p x$ \Rightarrow Lyapunov functions
- No classical solutions for switched DAEs
 - ⇒ Allow for jumps in solutions
- How does inconsistent initial value "jump" to consistent one?
 - \Rightarrow Consistency projectors $\Pi_{(E_1,A_1)},\ldots,\Pi_{(E_N,A_N)}$
- Differentiation of jumps
 - ⇒ Space of Distributions as solution space
- Multiplication with non-smooth coefficients
 - ⇒ Space of piecewise-smooth distributions
 - ⇒ Existence and uniqueness of solutions

- Introduction
 - System class: Definition and motivation
 - Destabilizing examples
- Classical DAEs
 - Solutions: Consistency and underlying ODE
 - Lyapunov functions
- 3 Distributional solutions for switched DAEs
- Stability of switched DAEs
 - Impulse freeness
 - Arbitrary switching
 - Jump free switching
 - Slow switching

Asymptotic stability and impulse free solutions

$$E_{\sigma}\dot{x} = A_{\sigma}x$$

(swDAE)

Definition (Asymptotic stability of switched DAE)

(swDAE) asymptotically stable :⇔

 \forall distr. solutions x: $\lim_{t\to\infty} x(t) = 0$ and x is impulse free

Let $\Pi_p := \Pi_{(E_p, A_p)}$ be the consistency projectors of (E_p, A_p)

Impulse freeness condition

(IFC):
$$\forall p, q \in \{1, ..., N\} : E_p(I - \Pi_p)\Pi_q = 0$$

Theorem (T. 2009)

(IFC) \Rightarrow All solutions of $E_{\sigma}\dot{x} = A_{\sigma}x$ are impulse free

Stability under arbitrary switching

Consider (swDAE) with additional assumption:

(
$$\exists V_p$$
): $\forall p \in \{1, \dots, N\} \exists$ Lyapunov function V_p for (E_p, A_p)

i.e. each DAE (E_p, A_p) is asymp. stable

Lyapunov jump condition

(LJC):
$$\forall p, q = 1, \dots, N \ \forall x \in \mathfrak{C}_{(E_q, A_q)} : V_p(\Pi_p x) \leq V_q(x)$$

Theorem (Liberzon and T. 2009)

$$(\mathsf{IFC}) \, \wedge \, (\exists V_p) \, \wedge \, (\mathsf{LJC}) \ \, \Rightarrow \ \, (\mathsf{swDAE}) \, \, \textit{asymptotically stable}$$

Examples 1, 2 and 3 all satisfy (IFC) and ($\exists V_p$), but none fulfills (LJC)

Consider special case, where switching does not induce jumps. For $x^0 \in \mathbb{R}^n$ define

$$\Sigma_{x^0} := \left\{ egin{array}{l} \sigma: \mathbb{R}
ightarrow \{1, \ldots, N\} & \exists \ ext{solution} \ x \ ext{of} \ (ext{swDAE}) \ x \ ext{has no jumps} \end{array}
ight.
ight.$$

Weak Lyapunov condition

(wLC):
$$\forall p, q = 1, \dots, N \ \forall x \in \mathfrak{C}_{(E_p, A_p)} \cap \mathfrak{C}_{(E_q, A_q)} : V_p(x) = V_q(x)$$

Theorem (Liberzon & T. 2009)

 $\sigma \in \Sigma_{x^0} \land x \text{ solution of (swDAE) with } x(0) = x^0 \land (\exists V_p) \land (wLC)$ $\Rightarrow x(t) \rightarrow 0 \text{ and } x \text{ impulse free}$

Appendix

Examples revisited

Introduction

Example 1:

Distributional solutions for switched DAEs

 $(\exists V_p)$ and (wLC) fulfilled

BUT: Σ_{x^0} is "empty" when $x^0 \neq 0$

i.e.: result not useful here

Example 2:

 $(\exists V_p)$ and $\Sigma_{x^0} \neq \emptyset$ for some x^0

BUT: (wLC) not satisfied

Example 3:

All conditions fulfilled!

⇒ all jump free solutions converge

1

Slow switching signals with dwell time $\tau_d > 0$:

$$\Sigma^{ au_d} := \left\{egin{array}{l} \sigma: \mathbb{R}
ightarrow \{1, \ldots, extstyle N\} & extstyle ext{switching times} \ t_i \in \mathbb{R}, i \in \mathbb{Z}: \ t_{i+1} - t_i \geq au \end{array}
ight.
ight\}.$$

Theorem (Liberzon & T. 2009)

$$\exists \tau_d > 0 \ \forall \sigma \in \Sigma^{\tau_d}$$
: (IFC) \land ($\exists V_p$) \Rightarrow (swDAE) asymptotically stable

As a reminder:

(IFC):
$$\forall p, q \in \{1, \dots, N\} : E_p(I - \Pi_{(E_p, A_p)})\Pi_{(E_q, A_q)} = 0$$

Appendix

Appendix

Distributional solutions

Example (Inconsistent initial values)

$$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} \Leftrightarrow & x_1 = 0 \\ x_2 = \dot{x}_1 \end{pmatrix} \quad \text{on } [0, \infty)$$
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \qquad \text{on } (-\infty, 0)$$

Obviously:
$$x_1 = \mathbb{1}_{(-\infty,0)}$$

$$x_2 = \begin{cases} 0, & \text{auf } (-\infty, 0) \\ \dot{x}_1 = -\delta_0, & \text{auf } [0, \infty) \end{cases}$$

hence: $x_2 = -\delta_0$ (Dirac impulse)

Existence and uniqueness of solutions

In the following: Space of piecewise smooth distributions distributions as solution space.

Consider $E_{\sigma}\dot{x} = A_{\sigma}x$ with

- $\sigma: \mathbb{R} \to \{1, \dots, N\}$, locally finite jumps
- \bullet $(E_1, A_1), \ldots, (E_N, A_N)$ regular

Theorem (T. 2009)

For each initial trajectory $x^0:(-\infty,0)\to R^n$ exists a unique distributional solution of

$$x = x^0$$
 on $(-\infty, 0)$
 $E_{\sigma}\dot{x} = A_{\sigma}x$ on $[0, \infty)$

Remark:

$$x$$
 distr. solution of $E_{\sigma}\dot{x}=A_{\sigma}x$ $\Rightarrow \quad \forall t\in\mathbb{R}: x(t+)=\Pi_{(E_{\sigma(t)},A_{\sigma(t)})}x(t-)$

Introduction

Appendix

Calculation of Consistency projectors

Theorem (Quasi-Weierstraß form, Berger, Ilchmann, T. 2009)

Distributional solutions for switched DAEs

Let (E, A) be regular.

$$\mathcal{V}_0 := \mathbb{R}^n, \qquad \mathcal{V}_{k+1} := A^{-1}(E\mathcal{V}_k), \ k = 0, 1, \dots, k^*$$

 $\mathcal{W}_0 := \{0\}, \qquad \mathcal{W}_{k+1} := E^{-1}(A\mathcal{W}_k), \ k = 0, 1, \dots, k^*.$

Let im $V = V_{k^*}$, im $W = V_{k^*}$ and T := [V, W], $S^{-1} := [EV, AW]$ then

$$(SET, SAT) = \begin{pmatrix} \begin{bmatrix} I & & \\ & N \end{bmatrix}, \begin{bmatrix} J & & \\ & & I \end{bmatrix} \end{pmatrix}.$$

Remark:

- $\mathcal{V}_k \supset \mathcal{V}_{k+1}$ and $\mathcal{W}_k \subseteq \mathcal{W}_{k+1}$
- V and W are easily computable (e.g. with a Matlab)
- Hence $\Pi_{(E,A)} = T \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} T^{-1}$ easily computable

Matlab Code for calculating the consistency projectors

Calculating a basis of the pre-image $A^{-1}(\text{im }S)$:

```
function V=getPreImage(A,S)
\lceil m1, n1 \rceil = size(A): \lceil m2, n2 \rceil = size(S):
if m1 == m2 \mid m2 == 0
     H = null([A,S]):
     V = colspace(H(1:n1,:));
end;
```

Calculating V with im $V = \mathcal{V}_{k^*}$:

Classical DAFs

```
function V = getVspace(E,A)
[m,n]=size(E):
if (m==n) & size(E)==size(A)
    V = eye(n,n);
    oldsize=n: newsize=n: finished=0:
    while finished == 0:
       EV = colspace(E*V):
       V=getPreImage(A,EV);
       oldsize=newsize:
       newsize = rank(V):
       finished = (newsize == oldsize);
    end:
end:
```

Calculating W with im $W = \mathcal{W}_{k^*}$ analog.