Linear differential-algebraic equations with piecewise smooth coefficients

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

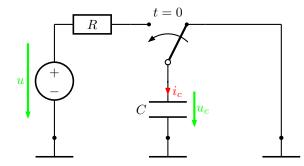
Perugia, 20th June 2007

Content

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

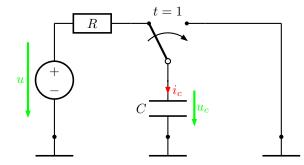
A simple example



Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

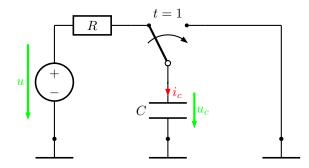
A simple example



Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

A simple example



Capacitor equation:
$$C \frac{d}{dt} u_c(t) = i_c(t), t \in \mathbb{R}$$

Kirchhoff's law: $u_c(t) = \begin{cases} u(t) - Ri_c(t), & t \in [0, 1) \\ 0, & \text{otherwise} \end{cases}$

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

Definition (Linear time-varying DAE)

 $E(\cdot)\dot{x} = A(\cdot)x + f$

Example:
$$x_1 = u_c, x_2 = i_c$$

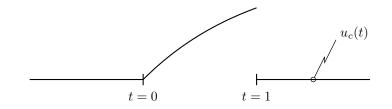
$$E(t) = \begin{bmatrix} C & 0 \\ 0 & 0 \end{bmatrix}, \quad A(t) = \begin{cases} \begin{bmatrix} 0 & 1 \\ 1 & R \end{bmatrix}, \quad t \in [0, 1) \\ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \text{otherwise} \end{cases}$$

$$f(t) = \begin{cases} u(t), \quad t \in [0, 1) \\ 0, \quad \text{otherwise} \end{cases}$$

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

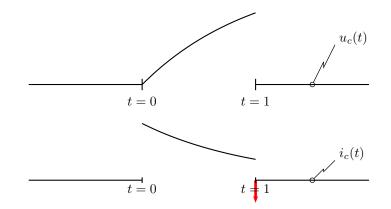
Solution of example



Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

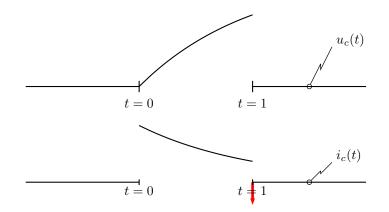
Solution of example



Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

Solution of example



Conclusion

Solution theory of DAEs needs distributional solutions.

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

Content

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

Distributions - informal

- Generalized functions
- Arbitrarily often differentiable

th:

Distributions - informal

- Generalized functions
- Arbitrarily often differentiable

Definition (Test functions)

 $\mathbf{\Phi} := \left\{ \ \varphi : \mathbb{R} \to \mathbb{R} \ \mid \varphi \text{ is smooth with bounded support } \right\}$

Definition (Distributions)

 $\mathbb{D} := \{ D : \Phi \to \mathbb{R} \mid D \text{ is linear und continuous } \} = \Phi'$

Definition (Support of distribution)

 $\operatorname{supp} D := (\bigcup \{ M \subseteq \mathbb{R} \mid \forall \varphi \in \Phi : \operatorname{supp} \varphi \subseteq M \Rightarrow D(\varphi) = 0 \})^{C}$

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

Definition (Regular distributions)

$$f \in L_{1,\mathsf{loc}}(\mathbb{R} o \mathbb{R})$$
: $f_{\mathbb{D}} : \Phi o \mathbb{R}, \ \varphi \mapsto \int_{\mathbb{R}} \varphi(t) f(t) \mathsf{d}t$

Dirac impulse at $t \in \mathbb{R}$

 $\delta_t: \Phi \to \mathbb{R}, \quad \varphi \mapsto \varphi(t)$

Definition (Derivative of distributions)

 $D'(\varphi) := -D(\varphi')$

Definition (Multiplication with smooth function $a : \mathbb{R} \to \mathbb{R}$) $(aD)(\varphi) := D(\mathbf{a}\varphi)$

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

Definition (Distributional DAE)

 $E(\cdot)X' = A(\cdot)X + f_{\mathbb{D}}, \quad X \in \mathbb{D}^n$

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

Definition (Distributional DAE)

 $E(\cdot)X' = A(\cdot)X + f_{\mathbb{D}}, \quad X \in \mathbb{D}^n$

Problem

Only well defined if E and A are constant or smooth!

 \Rightarrow Multiplication *aD* for non-smooth *a* : $\mathbb{R} \rightarrow \mathbb{R}$ must be studied.

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

Content

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

Question

Is it possible to define aD for non-smooth a and arbitrary $D \in \mathbb{D}$?

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

th:

Question

Is it possible to define aD for non-smooth a and arbitrary $D \in \mathbb{D}$?

Answer: NO (already for piecewise constant functions a)

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

th

Question

Is it possible to define aD for non-smooth a and arbitrary $D \in \mathbb{D}$?

Answer: NO (already for piecewise constant functions *a*) Therefore, consider a subset of \mathbb{D} :

Definition (Piecewise W^n distributions)

 $D \in \mathbb{D}_{\mathsf{pwWn}} :\Leftrightarrow D = f_{\mathbb{D}} + \sum_{i} D_{i}$

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

Question

Is it possible to define aD for non-smooth a and arbitrary $D \in \mathbb{D}$?

Answer: NO (already for piecewise constant functions *a*) Therefore, consider a subset of \mathbb{D} :

Definition (Piecewise W^n distributions)

 $D \in \mathbb{D}_{\mathsf{pwW}}$: $\Leftrightarrow D = f_{\mathbb{D}} + \sum_i D_i$, where

• $f \in W^n_{pw}(\mathbb{R} \to \mathbb{R}) \subseteq L_{1,loc}(\mathbb{R} \to \mathbb{R})$, i.e. piecewise *n*-times weakly differentiable

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

Question

Is it possible to define aD for non-smooth a and arbitrary $D \in \mathbb{D}$?

Answer: NO (already for piecewise constant functions *a*) Therefore, consider a subset of \mathbb{D} :

Definition (Piecewise W^n distributions)

 $D \in \mathbb{D}_{\mathsf{pwW}}$: $\Leftrightarrow D = f_{\mathbb{D}} + \sum_i D_i$, where

- $f \in W^n_{pw}(\mathbb{R} \to \mathbb{R}) \subseteq L_{1,loc}(\mathbb{R} \to \mathbb{R})$, i.e. piecewise *n*-times weakly differentiable
- $D_i \in \mathbb{D}$, $i \in \mathbb{Z}$, are distributions with point support $\{t_i\}$

Stephan Trenn

Question

Is it possible to define aD for non-smooth a and arbitrary $D \in \mathbb{D}$?

Answer: NO (already for piecewise constant functions *a*) Therefore, consider a subset of \mathbb{D} :

Definition (Piecewise W^n distributions)

 $D \in \mathbb{D}_{pwW^n} :\Leftrightarrow D = f_{\mathbb{D}} + \sum_i D_i$, where

- $f \in W^n_{pw}(\mathbb{R} \to \mathbb{R}) \subseteq L_{1,loc}(\mathbb{R} \to \mathbb{R})$, i.e. piecewise *n*-times weakly differentiable
- $D_i \in \mathbb{D}$, $i \in \mathbb{Z}$, are distributions with point support $\{t_i\}$
- the support of all D_i has no accumulation points

Stephan Trenn

th

Piecewise regular distributions

$$W^{n}_{pw}(\mathbb{R} \to \mathbb{R}) \subseteq W^{0}_{pw}(\mathbb{R} \to \mathbb{R}) = L_{1,loc}(\mathbb{R} \to \mathbb{R})$$

 $\mathbb{D}_{pw} := \mathbb{D}_{pw}W^{0}$ - piecewise regular distributions

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

Piecewise regular distributions

$$W^{n}_{pw}(\mathbb{R} \to \mathbb{R}) \subseteq W^{0}_{pw}(\mathbb{R} \to \mathbb{R}) = L_{1,loc}(\mathbb{R} \to \mathbb{R})$$

 $\mathbb{D}_{pw} := \mathbb{D}_{pw}W^{0}$ - piecewise regular distributions

Lemma

$$D \in \mathbb{D}_{\mathrm{pw}W^{n+1}} \quad \Rightarrow \quad D' \in \mathbb{D}_{\mathrm{pw}W^n}.$$

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

th:

Piecewise regular distributions

$$W^{n}_{pw}(\mathbb{R} \to \mathbb{R}) \subseteq W^{0}_{pw}(\mathbb{R} \to \mathbb{R}) = L_{1,loc}(\mathbb{R} \to \mathbb{R})$$

 $\mathbb{D}_{pw} := \mathbb{D}_{pw}W^{0}$ - piecewise regular distributions

Lemma

$$D \in \mathbb{D}_{\mathsf{pw}W^{n+1}} \quad \Rightarrow \quad D' \in \mathbb{D}_{\mathsf{pw}W^n}.$$

Definition (Restriction of piecewise regular distributions)

$$\mathit{D} = \mathit{f}_{\mathbb{D}} + \sum_{i} \mathit{D}_{i} \in \mathbb{D}_{\mathsf{pw}}$$
, $\mathit{M} \subseteq \mathbb{R}$

$$D_M := (f_M)_{\mathbb{D}} + \sum_i \mathbb{1}_M(t_i) D_i$$

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

Definition (Piecewise smooth functions)

$$a \in \mathcal{C}^{\infty}{}_{\mathsf{pw}}(\mathbb{R} \to \mathbb{R}) \quad :\Leftrightarrow \quad a = \sum_{j} \mathbb{1}_{l_{j}} a_{j},$$

where $a_{j} \in \mathcal{C}^{\infty}(\mathbb{R} \to \mathbb{R})$ and $l_{j} = [t_{j}, t_{j+1})$ for $j \in \mathbb{Z}$.

Note: Representation is not unique!

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

Definition (Piecewise smooth functions)

$$a \in \mathcal{C}^{\infty}{}_{\mathsf{pw}}(\mathbb{R} \to \mathbb{R}) \quad :\Leftrightarrow \quad a = \sum_{j} \mathbb{1}_{I_{j}} a_{j},$$

where $a_{j} \in \mathcal{C}^{\infty}(\mathbb{R} \to \mathbb{R})$ and $I_{j} = [t_{j}, t_{j+1})$ for $j \in \mathbb{Z}$.

Note: Representation is not unique!

Definition (Multiplication with piecewise smooth functions)

$$D \in \mathbb{D}_{\mathsf{pw}}, \ a \in \mathcal{C}^{\infty}{}_{\mathsf{pw}}(\mathbb{R}
ightarrow \mathbb{R})$$

$$aD := \sum_j a_j D_{I_j}$$

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

Properties

- aD does not depend on the specific representation of a
- aD is again a distribution, i.e. linear and continuous
- aD "behaves" like multiplication, e.g. $(a_1 + a_2)D = a_1D + a_2D$, ...

•
$$a(f_{\mathbb{D}}) = (af)_{\mathbb{D}}$$

Properties

- *aD* does not depend on the specific representation of *a*
- aD is again a distribution, i.e. linear and continuous
- aD "behaves" like multiplication, e.g. $(a_1 + a_2)D = a_1D + a_2D$, ...

•
$$a(f_{\mathbb{D}}) = (af)_{\mathbb{D}}$$

 \Rightarrow Distributional DAE

$$E(\cdot)X' = A(\cdot)X + F$$

with piecewise smooth coefficients makes sense!

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

Content

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

Definition (Distributional solution)

Consider

$$E(\cdot)X' = A(\cdot)X + F, \qquad (1)$$

with $E, A \in \mathcal{C}^{\infty}_{pw}(\mathbb{R} \to \mathbb{R}^{n \times n})$, $F \in \mathbb{D}_{pwW}$. A distributional solution of (1) is

 $X \in \mathbb{D}_{\mathsf{pw} \mathbf{W}^1}$

which satisfies (1).

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

Definition (Distributional solution)

Consider

$$E(\cdot)X' = A(\cdot)X + F, \qquad (1)$$

with $E, A \in \mathcal{C}^{\infty}_{pw}(\mathbb{R} \to \mathbb{R}^{n \times n})$, $F \in \mathbb{D}_{pwW}$. A distributional solution of (1) is

 $X \in \mathbb{D}_{\mathsf{pw} \mathbf{W}^1}$

which satisfies (1).

Lemma

If $E\dot{x} = Ax + f$ has a classical solution $x : \mathbb{R} \to \mathbb{R}^n$, then $x_{\mathbb{D}}$ is a distributional solution of $EX' = AX + f_{\mathbb{D}}$.

Stephan Trenn

th

Problems with IVPs

1. Writing $X(t) = x_0$ is not possible.

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

Problems with IVPs

- 1. Writing $X(t) = x_0$ is not possible.
- 2. Inconsistent initial values.

Example for 2.: $E\dot{x} = Ax$ with E = 0 and A = I

has only the trivial solution (also in the distributional sense).

Problems with IVPs

- 1. Writing $X(t) = x_0$ is not possible.
- 2. Inconsistent initial values.

Example for 2.: $E\dot{x} = Ax$ with E = 0 and A = I

has only the trivial solution (also in the distributional sense).

Solution to problem 1

For $D \in \mathbb{D}_{pwW^1}$ the term D(t-) is well defined.

Reason: The regular part $f_{\mathbb{D}}$ of $D = f_{\mathbb{D}} + \sum_{i} D_{i}$ is piecewise continuous.

Stephan Trenn

Linear differential-algebraic equations with piecewise smooth coefficients

Solution to problem 2

 $X \in \mathbb{D}_{pwW^1}$ solves the IVP EX' = AX + F, $X(t_0-) = x_0$: \Leftrightarrow

X solves $E_{IVP}X' = A_{IVP}X + F_{IVP}$, where

•
$$E_{\text{IVP}} = \mathbb{1}_{(-\infty,t_0)}0 + \mathbb{1}_{[t_0,\infty)}E_{t_0}$$

•
$$A_{\mathsf{IVP}} = \mathbb{1}_{(-\infty,t_0)}I + \mathbb{1}_{[t_0,\infty)}A$$
,

•
$$F_{\text{IVP}} = -\mathbb{1}_{(-\infty,t_0)_{\mathbb{D}}} x_0 + \mathbb{1}_{[t_0,\infty)} F$$
,

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

th

Solution to problem 2

 $X \in \mathbb{D}_{pwW^1}$ solves the IVP EX' = AX + F, $X(t_0-) = x_0$: \Leftrightarrow

X solves $E_{IVP}X' = A_{IVP}X + F_{IVP}$, where

•
$$E_{\text{IVP}} = \mathbb{1}_{(-\infty,t_0)}0 + \mathbb{1}_{[t_0,\infty)}E_{t_0}$$

•
$$A_{\mathsf{IVP}} = \mathbbm{1}_{(-\infty,t_0)}I + \mathbbm{1}_{[t_0,\infty)}A$$
,

•
$$F_{\text{IVP}} = -\mathbb{1}_{(-\infty,t_0)_{\mathbb{D}}} x_0 + \mathbb{1}_{[t_0,\infty)} F$$
,

New viewpoint

An IVP is a DAE with non-smooth coefficients!

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau

- DAEs with piecewise coefficients play an important role
 - electrical circuits with switches
 - systems with possible structural changes
 - initial value problems

- DAEs with piecewise coefficients play an important role
 - electrical circuits with switches
 - systems with possible structural changes
 - initial value problems
- distributional solutions must be considered

Summary

tr

- DAEs with piecewise coefficients play an important role
 - electrical circuits with switches
 - systems with possible structural changes
 - initial value problems
- distributional solutions must be considered
- new distributional subspaces were introduced, which
 - generalize existing approaches
 - allow for multiplication with non-smooth coefficients
 - allow for distributional IVPs
 - can deal with inconsistent initial values

Stephan Trenn

Counterexample

$$egin{aligned} D &= \sum_{i \in \mathbb{N}} d_n \delta_{d_n} \in \mathbb{D} ackslash \mathbb{D}_{\mathsf{pw}}, \quad d_n := rac{(-1)^n}{n} \ a &= \mathbb{1}_{[0,\infty)} \in \mathcal{C}^\infty_{\mathsf{pw}}(\mathbb{R} o \mathbb{R}) \end{aligned}$$

Product is not well-defined

$$aD = \sum_{k \in \mathbb{N}} \frac{1}{2k} \delta_{1/2k} \notin \mathbb{D}, \text{ because}$$
$$(aD)(\varphi) = \sum_{k \in \mathbb{N}} \frac{\varphi(1/2k)}{2k} = \pm \infty$$

for $\varphi \in \Phi$ with $\varphi(0) \neq 0$.

Stephan Trenn

Institut für Mathematik, Technische Universität Ilmenau