Analogue Implementation of the Funnel Controller

Nagendra Mandaloju and Stephan Trenn

University of Southampton and Technische Universität Ilmenau

Southampton, March 15th 2006

Content

1 The Funnel Controller

- System class
- The funnel
- The gain function
- Theoretical results

Nagendra Mandaloju and Stephan Trenn

Scope of funnel control

Aim

Tracking of a reference signal.

Nagendra Mandaloju and Stephan Trenn

Scope of funnel control

Aim

Tracking of a reference signal.

Nagendra Mandaloju and Stephan Trenn

Properties of the system class

Nagendra Mandaloju and Stephan Trenn

University of Southampton and Technische Universität Ilmenau

Properties of the system class

• nonlinear functional differential equations

Nagendra Mandaloju and Stephan Trenn

Properties of the system class

- nonlinear functional differential equations
- bounded-input, bounded-output functional operators such as hysterises and delays

Nagendra Mandaloju and Stephan Trenn

Properties of the system class

- nonlinear functional differential equations
- bounded-input, bounded-output functional operators such as hysterises and delays
- relative degree one and generalized high-frequency gain property

Control objectives

- Practical asymptotic stability of the error, i.e. for a given $\lambda > 0$ $\exists T > 0 \quad \forall t \ge T : |e(t)| < \lambda.$
- **Prescribed transient behaviour**, e.g. guaranteing an upper bound for the overshoot or an prescribed transient time.
- **Independence of system parameters**, i.e. the same controller works for all systems of the systems class.

Nagendra Mandaloju and Stephan Trenn

Control objectives

- Practical asymptotic stability of the error, i.e. for a given $\lambda > 0$ $\exists T > 0 \quad \forall t \ge T : |e(t)| < \lambda.$
- **Prescribed transient behaviour**, e.g. guaranteing an upper bound for the overshoot or an prescribed transient time.
- **Independence of system parameters**, i.e. the same controller works for all systems of the systems class.

Nagendra Mandaloju and Stephan Trenn

Control objectives

- Practical asymptotic stability of the error, i.e. for a given $\lambda > 0$ $\exists T > 0 \quad \forall t \ge T : |e(t)| < \lambda.$
- **Prescribed transient behaviour**, e.g. guaranteing an upper bound for the overshoot or an prescribed transient time.
- **Independence of system parameters**, i.e. the same controller works for all systems of the systems class.

Nagendra Mandaloju and Stephan Trenn

Control objectives \Leftrightarrow prescribed funnel

The funnel $\mathcal{F} \subseteq \mathbb{R}_{\geq 0} \times \mathbb{R}^n$:

Nagendra Mandaloju and Stephan Trenn

Architecture of the funnel controller

The control law:

$$u(t) = -k(t) e(t)$$

The gain function

$$k(t) = K_{\mathcal{F}}(t, e(t))$$

$$K_{\mathcal{F}}: \mathcal{F} \to \mathbb{R}_{\geq 0}$$

Nagendra Mandaloju and Stephan Trenn

University of Southampton and Technische Universität Ilmenau

Necessary properties of the gain function

Property A

Property B

$$\forall \varepsilon > 0 \ \forall \delta > 0 \ \exists K > 0 \ \forall (t, e) \in \mathcal{F}:$$

$${
m dist}(e,\partial\mathcal{F}_t)\geqarepsilon ext{ and } t\geq\delta ext{ } \Rightarrow extsf{ } \mathcal{K}_\mathcal{F}(t,e)\leq K$$

Nagendra Mandaloju and Stephan Trenn

University of Southampton and Technische Universität Ilmenau

Theoretical results

Theorem

For any reference signal any consistent initial data, there **exists a** solution of the closed-loop initial-value problem. Every solution can be extended to a maximal solution $y : [-h, \omega) \to \mathbb{R}^n$ and every maximal solution has the following properties

ω = ∞,
 t ↦ k(t) = K_F(t, e(t)) is bounded on ℝ_{≥0},
 ∃ε > 0 ∀t ∈ ℝ_{≥0}: dist(e(t), ∂F(t)) ≥ ε.

Proof in: Ilchmann, Ryan, Trenn (2005): *Tracking control: performance funnels and prescribed transient behaviour*

Nagendra Mandaloju and Stephan Trenn

Further results

• First funnel controller

Ilchmann, Ryan, Sangwin (2002): *Tracking with prescribed transient behaviour*

- Application to a model of chemical reactors Ilchmann, Trenn (2004): Input constrained funnel control with applications to chemical reactor models
- **Higher relative degree systems** Ilchmann, Ryan, Townsend (2006): *Tracking with prescribed transient behaviour for nonlinear systems of known relative degree*

Further results

• First funnel controller

Ilchmann, Ryan, Sangwin (2002): *Tracking with prescribed transient behaviour*

- Application to a model of chemical reactors Ilchmann, Trenn (2004): Input constrained funnel control with applications to chemical reactor models
- **Higher relative degree systems** Ilchmann, Ryan, Townsend (2006): *Tracking with prescribed transient behaviour for nonlinear systems of known relative degree*

Further results

• First funnel controller

Ilchmann, Ryan, Sangwin (2002): *Tracking with prescribed transient behaviour*

• Application to a model of chemical reactors Ilchmann, Trenn (2004): Input constrained funnel control with applications to chemical reactor models

• Higher relative degree systems

Ilchmann, Ryan, Townsend (2006): *Tracking with prescribed transient behaviour for nonlinear systems of known relative degree*

The Funnel Controller

Analogue Implementation

tr

Analogue Implementation

Now to Nagendra ...

Nagendra Mandaloju and Stephan Trenn